首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用ML.NET预测纽约出租车费

有了上一篇《.NET Core玩转机器学习》打基础,这一次我们以纽约出租车费的预测做为新的场景案例,来体验一下回归模型。

场景概述

我们的目标是预测纽约的出租车费,乍一看似乎仅仅取决于行程的距离和时长,然而纽约的出租车供应商对其他因素,如额外的乘客数、信用卡而不是现金支付等,会综合考虑而收取不同数额的费用。纽约市官方给出了一份样本数据。

确定策略

为了能够预测出租车费,我们选择通过机器学习建立一个回归模型。使用官方提供的真实数据进行拟合,在训练模型的过程中确定真正能影响出租车费的决定性特征。在获得模型后,对模型进行评估验证,如果偏差在接受的范围内,就以这个模型来对新的数据进行预测。

解决方案

创建项目

看过上一篇文章的读者,就比较轻车熟路了,推荐使用Visual Studio 2017创建一个.NET Core的控制台应用程序项目,命名为TaxiFarePrediction。使用NuGet包管理工具添加对Microsoft.ML的引用。

准备数据集

下载训练数据集taxi-fare-train.csv和验证数据集taxi-fare-test.csv,数据集的内容类似为:

vendor_id,rate_code,passenger_count,trip_time_in_secs,trip_distance,payment_type,fare_amount

VTS,1,1,1140,3.75,CRD,15.5

VTS,1,1,480,2.72,CRD,10.0

VTS,1,1,1680,7.8,CSH,26.5

VTS,1,1,600,4.73,CSH,14.5

VTS,1,1,600,2.18,CRD,9.5

...

对字段简单说明一下:

在项目中添加一个Data目录,将两份数据集复制到该目录下,对文件属性设置“复制到输出目录”。

定义数据类型和路径

首先声明相关的包引用。

using System;

using Microsoft.ML.Models;

using Microsoft.ML.Runtime;

using Microsoft.ML.Runtime.Api;

using Microsoft.ML.Trainers;

using Microsoft.ML.Transforms;

using System.Collections.Generic;

using System.Linq;

using Microsoft.ML;

在Main函数的上方定义一些使用到的常量。

conststringDataPath = @".\Data\taxi-fare-test.csv";conststringTestDataPath = @".\Data\taxi-fare-train.csv";conststringModelPath = @".\Models\Model.zip";conststringModelDirectory = @".\Models";

接下来定义一些使用到的数据类型,以及和数据集中每一行的位置对应关系。

public class TaxiTrip

{

[Column(ordinal: "0")]

public string vendor_id;

[Column(ordinal: "1")]

public string rate_code;

[Column(ordinal: "2")]

public float passenger_count;

[Column(ordinal: "3")]

public float trip_time_in_secs;

[Column(ordinal: "4")]

public float trip_distance;

[Column(ordinal: "5")]

public string payment_type;

[Column(ordinal: "6")]

public float fare_amount;

}

public class TaxiTripFarePrediction

{

[ColumnName("Score")]

public float fare_amount;

}

static class TestTrips

{

internal static readonly TaxiTrip Trip1 = new TaxiTrip

{

vendor_id = "VTS",

rate_code = "1",

passenger_count = 1,

trip_distance = 10.33f,

payment_type = "CSH",

fare_amount = 0 // predict it. actual = 29.5

};

}

创建处理过程

创建一个Train方法,定义对数据集的处理过程,随后声明一个模型接收训练后的结果,在返回前把模型保存到指定的位置,以便以后直接取出来使用不需要再重新训练。

public static async Task

> Train()

{

var pipeline = new LearningPipeline();

pipeline.Add(new TextLoader(DataPath, useHeader: true, separator: ","));

pipeline.Add(new ColumnCopier(("fare_amount", "Label")));

pipeline.Add(new CategoricalOneHotVectorizer("vendor_id",

"rate_code",

"payment_type"));

pipeline.Add(new ColumnConcatenator("Features",

"vendor_id",

"rate_code",

"passenger_count",

"trip_distance",

"payment_type"));

pipeline.Add(new FastTreeRegressor());

PredictionModel model = pipeline.Train();

if (!Directory.Exists(ModelDirectory))

{

Directory.CreateDirectory(ModelDirectory);

}

await model.WriteAsync(ModelPath);

return model;

}

评估验证模型

创建一个Evaluate方法,对训练后的模型进行验证评估。

public static void Evaluate(PredictionModel model)

{

var testData = new TextLoader(TestDataPath, useHeader: true, separator: ",");

var evaluator = new RegressionEvaluator();

RegressionMetrics metrics = evaluator.Evaluate(model, testData);

// Rms should be around 2.795276

Console.WriteLine("Rms=" + metrics.Rms);

Console.WriteLine("RSquared = " + metrics.RSquared);

}

预测新数据

定义一个被用于预测的新数据,对于各个特征进行恰当地赋值。

static class TestTrips

{

internal static readonly TaxiTrip Trip1 = new TaxiTrip

{

vendor_id = "VTS",

rate_code = "1",

passenger_count = 1,

trip_distance = 10.33f,

payment_type = "CSH",

fare_amount = 0 // predict it. actual = 29.5

};

}

预测的方法很简单,prediction即预测的结果,从中打印出预测的费用和真实费用。

varprediction = model.Predict(TestTrips.Trip1);Console.WriteLine("Predicted fare: , actual fare: 29.5", prediction.fare_amount);

运行结果

到此我们完成了所有的步骤,关于这些代码的详细说明,可以参看《Tutorial: Use ML.NET to Predict New York Taxi Fares (Regression)》,只是要注意该文中的部分代码有误,由于使用到了C# 7.1的语法特性,本文的代码是经过了修正的。完整的代码如下:

using System;

using Microsoft.ML.Models;

using Microsoft.ML.Runtime;

using Microsoft.ML.Runtime.Api;

using Microsoft.ML.Trainers;

using Microsoft.ML.Transforms;

using System.Collections.Generic;

using System.Linq;

using Microsoft.ML;

using System.Threading.Tasks;

using System.IO;

namespace TaxiFarePrediction

{

class Program

{

const string DataPath = @".\Data\taxi-fare-test.csv";

const string TestDataPath = @".\Data\taxi-fare-train.csv";

const string ModelPath = @".\Models\Model.zip";

const string ModelDirectory = @".\Models";

public class TaxiTrip

{

[Column(ordinal: "0")]

public string vendor_id;

[Column(ordinal: "1")]

public string rate_code;

[Column(ordinal: "2")]

public float passenger_count;

[Column(ordinal: "3")]

public float trip_time_in_secs;

[Column(ordinal: "4")]

public float trip_distance;

[Column(ordinal: "5")]

public string payment_type;

[Column(ordinal: "6")]

public float fare_amount;

}

public class TaxiTripFarePrediction

{

[ColumnName("Score")]

public float fare_amount;

}

static class TestTrips

{

internal static readonly TaxiTrip Trip1 = new TaxiTrip

{

vendor_id = "VTS",

rate_code = "1",

passenger_count = 1,

trip_distance = 10.33f,

payment_type = "CSH",

fare_amount = 0 // predict it. actual = 29.5

};

}

public static async Task

> Train()

{

var pipeline = new LearningPipeline();

pipeline.Add(new TextLoader(DataPath, useHeader: true, separator: ","));

pipeline.Add(new ColumnCopier(("fare_amount", "Label")));

pipeline.Add(new CategoricalOneHotVectorizer("vendor_id",

"rate_code",

"payment_type"));

pipeline.Add(new ColumnConcatenator("Features",

"vendor_id",

"rate_code",

"passenger_count",

"trip_distance",

"payment_type"));

pipeline.Add(new FastTreeRegressor());

PredictionModel model = pipeline.Train();

if (!Directory.Exists(ModelDirectory))

{

Directory.CreateDirectory(ModelDirectory);

}

await model.WriteAsync(ModelPath);

return model;

}

public static void Evaluate(PredictionModel model)

{

var testData = new TextLoader(TestDataPath, useHeader: true, separator: ",");

var evaluator = new RegressionEvaluator();

RegressionMetrics metrics = evaluator.Evaluate(model, testData);

// Rms should be around 2.795276

Console.WriteLine("Rms=" + metrics.Rms);

Console.WriteLine("RSquared = " + metrics.RSquared);

}

static async Task Main(string[] args)

{

PredictionModel model = await Train();

Evaluate(model);

var prediction = model.Predict(TestTrips.Trip1);

Console.WriteLine("Predicted fare: , actual fare: 29.5", prediction.fare_amount);

}

}

}

不知不觉我们的ML.NET之旅又向前进了一步,是不是对于使用.NET Core进行机器学习解决现实生活中的问题更有兴趣了?请保持关注吧。

原文地址:http://www.cnblogs.com/BeanHsiang/p/9017618.html

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180510G0BW4G00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券