(给算法爱好者加星标,修炼编程内功)
作者:Brandon Skerritt,编译:机器之心 -高璇、思源
对于编程算法,可能很多读者在学校第一个了解的就是冒泡排序,但是你真的知道 Python 内建排序算法 list.sort() 的原理吗?它使用的是一种快速、稳定的排序算法 Timsort,其时间复杂度为 O(n log n),该算法的目标在于处理大规模真实数据。
Timsort 是一种对真实数据非常有效的排序算法。Tim Peters 在 2001 年为 Python 编程语言创造了 Timsort。Timsort 首先分析它要排序的列表,然后基于该分析选择合理方案。
Timsort 自发明以来,就成为 Python、Java 、Android 平台和 GNU Octave 的默认排序算法。
图源:http://bigocheatsheet.com/
Timsort 的排序时间与 Mergesort 相近,快于其他大多数排序算法。Timsort 实际上借鉴了插入排序和归并排序的方法,后文将详细介绍它的具体过程。
Peters 设计 Timsort 是为了利用大量存在于现实数据集中的有序元素,这些有序元素被称为「natural runs」。总而言之,Timsort 会先遍历所有数据并找到数据中已经排好序的分区,且每一个分区可以称为一个 run,最后再按规则将这些 run 归并为一个。
数组中元素少于 64 个
如果排序的数组中元素少于 64 个,那么 Timsort 将执行插入排序。插入排序是对小型列表最有效的简单排序,它在大型列表中速度很慢,但是在小型列表中速度很快。插入排序的思路如下:
逐个查看元素
通过在正确的位置插入元素来建立排序列表
下面的跟踪表说明了插入排序如何对列表 [34, 10, 64, 51, 32, 21] 进行排序的:
在这个示例中,我们将从左向右开始排序,其中黑体数字表示新的已排序子数组。在原数组每一个元素的排序中,它会从右到左对比已排序子数组,并插入适当的位置。用动图来说明插入排序:
天然有序的区块:run
如果列表大于 64 个元素,则 Timsort 算法首先遍历列表,查找「严格」升序或降序的部分(Run)。如果一个部分递减,Timsort 将逆转这个部分。因此,如果 run 递减,则如下图所示(run 用粗体表示):
如果没有递减,则如下图所示:
minrun 的大小是根据数组大小确定的。Timsort 算法选择它是为了使随机数组中的大部分 run 变成 minrun。当 run N 的长度等于或略小于 2 的倍数时,归并 2 个数组更加高效。Timsort 选择 minrun 是为了确保 minrun 等于或稍微小于 2 的倍数。
该算法选择 minrun 的范围为 32 ~ 64。当除以 minrun 时,使原始数组的长度等于或略小于 2 的倍数。
如果 run 的长度小于 minrun,则计算 minrun 减去 run 的长度。我们可以将 run 之外的新元素(minrun - run 个)放到 run 的后面,并执行插入排序来创建新的 run,这个新的 run 长度和 minrun 相同。
如果 minrun 是 63,而 run 的长度是 33,那么可以获取 63 - 33 = 30 个新元素。然后将这 30 个新元素放到 run 的末尾并作为新的元素,所以 run 的第 34 个元素 run[33] 有 30 个子元素。最后只需要对后面 30 个元素执行一个插入排序就能创建一个长度为 63 的新 run。
在这一部分完成之后,现在应该在一个列表中有一系列已排序的 run。
归并
Timsort 现在需要执行归并排序来合并 run,需要确保在归并排序的同时保持稳定和平衡。为了保持稳定,两个等值的元素不应该交换,这不仅保持了它们在列表中的原始位置,而且使算法更快。
当 Timsort 搜索到 runs 时,它们会被添加到堆栈中。一个简单的堆栈是这样的:
想象一堆盘子。你不能从底部取盘子,必须从顶部取,堆栈也是如此。
当归并不同的 run 时,Timsort 试图平衡两个相互矛盾的需求。一方面,我们希望尽可能地延迟归并,以便利用之后可能出现的模式。但我们更希望尽快归并,以利用刚才发现的在内存层级中仍然排名很高的 run。我们也不能「过分」延迟合并,因为它记住未合并的运行需要消耗内存,而堆栈的大小是固定的。
为了得到折衷方案,Timsort 追踪堆栈上最近的三个项,并为这些堆栈项创建了两个必须保持为 True 的规则:
A > B + C
B > C
其中 A、B 和 C 是堆栈中最近的三个项。
用 Tim Peters 自己的话来说:
一个好的折衷方案是在堆栈项上维护两个不变量,其中 A、B 和 C 是最右边三个还未归并片段的长度。
通常,将不同长度的相邻 run 归并在一起是很难的。更困难的是还必须要保持稳定。为了解决这个问题,Timsort 设置了临时内存。它将两个 run 中较小的(同时调用 runA 和 runB)放在这个临时内存中。
GALLOPING(飞奔模式)
当 Timsort 归并 A 和 B 时,它注意到一个 run 已经连续多次「获胜」。如果 run A 的数值完全小于 run B,那么 run A 会回到原始位置。归并这两个 run 会耗费巨大工作量,而且还不会取得任何效果。
通常情况下,数据会有一些预设的内部结构。Timsort 假设,如果 run A 中的值大多低于 run B 的值,那么 A 的值可能就会小于 B。
然后 Timsort 将进入飞奔模式。Timsort 不是检查 A[0] 和 B[0],而是二分法搜索 B[0] 在 A[0] 中的合理位置。这样,Timsort 可以将 A 的整个部分移动到合适的位置。然后,Timsort 在 B 中搜索 A[0] 的适当位置。然后,Timsort 将立即移动整个 B 到合适的位置。
Timsort 检查 B[0](值为 5),并使用二分法搜索查找其 A 中的正确位置。
现在 B[0] 在 A 列表的后面,Timsort 检查 B 的正确位置是否有 A[0](即 1),所以我们要看 1 的位置。这个数在 B 的前部,现在我们知道 B 在 A 的后边,A 在 B 的前边。
如果 B[0] 的位置非常接近 A 的前端(反之亦然),那么这个操作就没必要了。Timsort 也会注意到这一点,并通过增加连续获得 A 或 B 的数量提高进入飞奔模式的门槛。如果飞奔模式合理,Timsort 使它更容易重新进入该模式。
简而言之,Timsort 做了两件非常好的事情:
具有预设的内部结构的数组具有良好的性能
能够保持稳定的排序
在此之前,为了实现稳定的排序,必须将列表中的项压缩为整数,并将其排序为元组数组。
代码
下面的源代码基于我和 Nanda Javarma 的工作。源代码并不完整,也不是类似于 Python 的官方 sort() 源代码。这只是我实现的一个简化的 Timsort,可以对 Timsort 有个整体把握。此外,Python 中的内置 Timsort 算法是在 C 中正式实现的,因此能获得更好的性能。
Timsort 的原始源代码:https://github.com/python/cpython/blob/master/Objects/listobject.c。
Timsort 实际上在 Python 中已经内建了,所以这段代码只充当概念解释。要使用 Timsort,只需在 Python 中写:
或者:
如果你想掌握 Timsort 的工作方式并对其有所了解,我强烈建议你尝试自己实现它!
领取专属 10元无门槛券
私享最新 技术干货