首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

人脸识别的瓶颈在于数据集噪声

随着人脸数据集规模的逐渐扩大,研究者们设计出了各种更快更强的人脸识别网络。但是对于现有人脸数据集中的标签噪声问题,学界的理解依然有限。而现有人脸数据集中的标签噪声问题进行了深入研究,对MegaFace和MS-Celeb-1M数据集中的噪声特性和来源做了全面的分析,发现干净子集对于提高人脸识别精度效果显著。

本文对于人脸识别领域作出以下贡献:

清理出了现有大规模人脸数据集(包括 MegaFace 和 MS-Celeb-1M)的干净子集,并提出了一个新的无噪声人脸数据集 IMDb_Face;

利用原始数据集以及清理后的干净子集,对 MegaFace 和 MS-Celeb-1M 数据集中的噪声特性和来源做了全面的分析,发现干净子集对于提高人脸识别精度效果显著;

本文提出了一种用于数据清理的标注流程,大量的用户调研显示该流程是高效且可控的。

IMDb-Face 数据集开源地址:https://github.com/fwang91/IMDb-Face

《The Devil of Face Recognition is in the Noise》论文下载地址:http://cn.arxiv.org/abs/1807.11649

【今日机器学习概念】

Have a Great Definition

-THE END-

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20181124G1KQNV00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券