首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归

全文链接:http://tecdat.cn/?p=11617

相关视频

贝叶斯模型

假设我们有一个样本量的主题。贝叶斯多元回归假设该向量是从多元正态分布中提取的 ,通过使用恒等矩阵,我们假设独立的观察结果。

到目前为止,这与多元正态回归相同。则将概率最大化可得出以下解 :

贝叶斯模型是通过指定为一个先验分布得到 。在此示例中,我将在以下情况下使用 先验值

block Gibbs

在对采样器进行编码之前,我们需要导出Gibbs采样器的 每个参数的后验条件分布。

条件后验取更多的线性代数。

这是一个非常漂亮和直观的结果。条件后验的协方差矩阵是协方差矩阵的估计,

还要注意,条件后验是一个多元分布。因此,在Gibbs采样器的每次迭代中,我们从后验绘制出一个完整的矢量 。

模拟

我模拟的 结果向量。

运行 Gibbs采样器 会生成对真实系数和方差参数的估计。运行了500,000次迭代。周期为100,000次,10次迭代。

以下是MCMC链的图,其中真实值用红线表示。

这是修整后参数的后验分布:

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20221114A046P000?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券