提到体测,不少人会想起:测立定跳远时老师蹲在地上拉卷尺,测仰卧起坐时盯着秒表喊 “快一点”,最后成绩还可能因 “肉眼判断” 有偏差 —— 但现在,AI 智慧体测系统让这些麻烦事成了过去式。 传统体测要 “测一项等一项”,AI 系统却能让数据 “自己跑”:测肺活量时,智能吹嘴会把气流强度、持续时间实时传到系统,屏幕上秒显数字;测 50 米跑时,起点的红外感应器 detect 到 “人起跑” AI 系统会在测试中 “实时支招”:做仰卧起坐时,屏幕会跳提示 “当前每分钟 25 次,再快 5 次就能拿优秀”;测完后,会生成专属报告,用图表对比 “你的肺活量比同龄 80% 的人高,但立定跳远偏慢” 过去体测表可能弄丢,现在 AI 系统给每个人建 “健康档案”:刷脸就能登录,历年体测成绩、身高体重变化都能查,家长也能通过手机看 “孩子今年肺活量比去年提高 200 毫升”。 其实 AI 智慧体测系统不是 “取代老师”,而是帮老师 “省力气”、帮学生 “明方向”。它用技术把 “人工判断” 变成 “精准计算”,把 “一次性测试” 变成 “长期健康跟踪”。
langchain 概述 langchain是LLM与AI应用的粘合剂,是一个开源框架,旨在简化使用大型语言模型构建端到端应用程序过程,它也是ReAct(reason+act)论文的落地实现。 chains,langchain把提示词、大语言模型、结果解析封装成chain,并提供标准的接口,以便允许不同的chain形成交互序列,为AI原生应用提供端到端的chain。 content='Hi.'), SystemMessage(content='你的角色是一个诗人.'), HumanMessage(content='用七言绝句的形式写一首关于AI content='Hi.'), SystemMessage(content='你的角色是一个诗人.'), HumanMessage(content='用七言绝句的形式写一首关于AI
AI智能体创作思路 AI智能体的核心在于模拟人类思维和行为模式,通过算法和数据处理实现自主决策。创作思路通常包括目标定义、数据收集、模型训练、评估优化等环节。 目标定义阶段明确智能体的功能边界,比如聊天机器人、游戏NPC或自动化工具。数据收集阶段获取相关领域的语料、图像或其他输入数据。模型训练阶段选择合适的算法架构,如深度学习、强化学习或规则引擎。 GPT2Tokenizer.from_pretrained("gpt2-medium") model = GPT2LMHeadModel.from_pretrained("gpt2-medium") input_text = "AI 智能体的核心功能包括" input_ids = tokenizer.encode(input_text, return_tensors="pt") output = model.generate( 测试显示新版本准确率下降超过5%时 联邦学习实施方案: 采用安全聚合协议(Secure Aggregation)保护参与方数据 支持横向联邦(相同特征空间)和纵向联邦(不同特征空间)两种模式 典型应用案例:医疗AI
接AI智能体(三) memory工具使用 以往,我们都是直接跟大模型进行交互,没有办法系统的实现记忆。 在上图中,用户在向大模型问问题时会首先读取记忆体,查看以往是否回答过相同的问题或者相关的文档可以参考。 如果有就会返回并添加到提示词模版中,再通过大模型的处理得到答案,得到答案之后再将答案反写回记忆体,这是一个循环的过程。 history.add_ai_message('你好,我是AI助手,有什么可以帮你的吗?') history.add_ai_message('你好,我是AI助手,有什么可以帮你的吗?')
接AI智能体(五) Dify Dify是一个开源的Agent开发平台,使用Dify有两种方式,一种是使用Dify的在线平台。https://cloud.dify.ai。 一种是进行私有化部署。 DEPLOY_ENV: ${DEPLOY_ENV:-PRODUCTION} CHECK_UPDATE_URL: ${CHECK_UPDATE_URL:-https://updates.dify.ai true} WEAVIATE_AUTHORIZATION_ADMINLIST_USERS: ${WEAVIATE_AUTHORIZATION_ADMINLIST_USERS:-hello@dify.ai ssrf_proxy_network # ssrf_proxy server # for more information, please refer to # https://docs.dify.ai WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih} AUTHENTICATION_APIKEY_USERS: ${WEAVIATE_AUTHENTICATION_APIKEY_USERS:-hello@dify.ai
NotionAI智能体Notion3.0的AI智能体通过自动化流程实现复杂任务闭环。其核心能力包括智能搜索、数据分析、决策制定和执行操作。 智能体通过自然语言交互理解用户需求,自动调用数据库和外部工具完成任务。用户只需输入目标,如“分析Q3销售数据并制定优化方案”,系统即可生成可视化报告和执行建议。 零一万物万智2.5平台解析万智2.5平台采用多智能体协作架构,每个角色对应特定职能:市场智能体:自动生成营销方案并执行投放HR智能体:处理招聘全流程,包括简历筛选和面试安排财务智能体:实时监控预算并生成分析报表平台通过智能体间的通信协议实现协作 例如启动新项目时,系统自动组建包含产品、设计、开发智能体的虚拟团队,各角色通过API交换数据并同步进度。 监控系统需记录智能体的决策路径和执行效果,便于持续优化。
接AI智能体(四) MetaGPT 环境装配 metagpt下载地址:https://github.com/geekan/MetaGPT conda create -n metagpt python= 3.5-turbo api_key: "******" 测试: 在终端命令行中进入Meta-GPT-main目录中执行 metagpt "Write a cli snake game" 单动作智能体 多动作智能体 import asyncio import sys import subprocess from metagpt.llm import LLM from metagpt.actions import
model_name': 'glm-4', 'finish_reason': 'stop'}, id='run-b982480c-39d9-4445-8888-62a10339ef86-0')]} 状态持久化 许多AI
AI 智能体(AI Agent)的开发是一个复杂且多阶段的过程,涉及需求分析、算法设计、模型训练、系统集成和部署等多个环节。以下是 AI 智能体开发的典型流程。 1.需求分析与定义1.1明确目标确定 AI 智能体的核心功能和应用场景(如聊天机器人、推荐系统、自动驾驶等)。定义智能体的输入、输出和交互方式。 5.2模块集成将 AI 模型集成到应用程序中。与其他模块(如数据库、用户界面)进行交互。5.3性能优化优化模型推理速度(如模型量化、剪枝)。 验证 AI 智能体在实际场景中的表现。6.3用户测试邀请目标用户进行测试,收集反馈。根据反馈调整模型和系统。7.部署与监控7.1部署环境选择部署平台(如云端、边缘设备)。 总结AI 智能体的开发流程包括需求分析、数据收集、模型设计、训练与评估、系统集成、测试验证、部署监控和维护迭代。通过合理规划和使用工具,可以高效地开发出功能强大、性能优异的 AI 智能体。
AI 智能体(AI Agent)的应用非常广泛,几乎涵盖了我们生活的方方面面。它们能够自主地感知环境、做出决策并执行行动,从而完成各种复杂的任务。以下是一些 AI 智能体的典型应用场景。 娱乐:游戏 AI: 在游戏中扮演各种角色,例如敌人、队友、NPC 等,提高游戏的可玩性和挑战性。内容创作: 能够生成文本、图像、音乐等内容,例如写小说、作诗、绘画等。 一些具体的例子:谷歌 DeepMind 的 AlphaGo: 击败了人类围棋冠军,展示了 AI 在复杂决策领域的强大能力。亚马逊的 Alexa: 能够通过语音指令控制家电设备、播放音乐、查找信息等。 百度的文心一言 APP 上的智能体: 可以进行“视频对话”、背单词、纠正口语,还可以通过 AI 智能体模拟面试、与 AI 古人对话等,体现了 AI 智能体在内容创作和人机交互方面的应用。 总而言之,AI 智能体正在深刻地改变着我们的生活和工作方式。随着技术的不断发展,AI 智能体的应用领域还将不断拓展,为我们带来更多的便利和创新。
2025年以来,我们正站在人工智能应用演进的一个关键节点上,从预测式AI(分析模式、进行分类)到生成式AI(创造文本、代码、图像),我们如今正迈向第三个阶段:AI Agent。 这并非简单的技术迭代,而是一次根本性的范式转变,第三个阶段 AI Agent 随着模型的不断进化,能自主可控长时间运行,可能2026才是AI普及的开始。 AI Agent的构成 模型:为智能体的推理和决策提供动力的LLM,决定了智能体的下限。 工具:智能体可用于采取行动的外部函数或API。 指令:定义智能体行为的明确指导方针和安全策略。 , "agent": "AI Agent(智能体)是能够感知环境、做出决策并采取行动的自主系统。它由模型、工具和指令三部分组成。" 单智能体 单智能体的智能大部分场景下依赖基座模型,在处理明确问题时较为高效,对于约束性任务时较为准确,并且可以进行回测,但面对复杂、多领域任务时,其能力往往受限。
AI智能体的开发技术方案是一个复杂且多层面的决策过程,它需要根据智能体的具体功能、性能要求、部署环境、可扩展性以及团队的技术栈来综合考量。 以下是一个全面且分层的AI智能体开发技术方案,涵盖了从数据到部署的各个环节。 强化学习 (如果需要): Stable Baselines3/Ray RLlib: 用于训练决策制定型智能体,例如游戏AI、资源调度。 4 智能体逻辑与编排这是将AI模型能力“串联”起来,实现复杂行为的核心。Prompt Engineering: 精心设计给LLM的指令,定义智能体的角色、目标、约束和输出格式。 通过对上述各个层面的精心规划和技术选型,可以构建出健壮、高效且智能的AI智能体。
AI 智能体(AI Agent)的开发框架是构建智能体的核心工具和平台,它们提供了从数据处理、模型训练到部署和监控的全流程支持。以下是常用的 AI 智能体开发框架及其特点。 5.2H2O.ai特点:提供自动化的机器学习和深度学习工具。支持大规模数据处理和分布式计算。适用场景:企业级机器学习应用。 8.低代码/无代码 AI 平台8.1Google AutoML特点:提供自动化的模型训练和部署服务。支持图像、文本、表格数据等多种任务。适用场景:快速构建 AI 应用。 适用场景:企业级 AI 解决方案。总结AI 智能体的开发框架涵盖了从数据处理、模型训练到部署和监控的全流程。
AI智能体的功能规划需围绕其核心定位(如效率工具、决策助手、交互伙伴等),结合用户需求、技术可行性及场景特点,系统性地设计“基础功能+进阶能力”,确保智能体既能解决核心问题,又能通过差异化功能提升竞争力 一、基础功能:智能体的“必备能力”基础功能是智能体运行的核心支撑,确保其能完成最基本的感知、认知与交互任务,适用于所有类型的AI智能体(无论垂直领域或通用场景)。1. 二、进阶功能:智能体的“差异化竞争力”进阶功能是智能体满足特定场景需求、提升用户体验与价值的关键,需根据目标用户(如B端企业、C端消费者)和领域(如医疗、教育、金融)针对性设计。1. 动态内容推荐:根据用户画像推荐个性化内容(如教育智能体为小学生推荐拼音课程,为大学生推荐考研资料)。交互风格适配:调整回复语气与复杂度(如对老年人用简单词汇,对专业人士用术语)。3. 五、总结AI智能体的功能规划需遵循 “基础功能打地基,进阶能力塑差异” 的原则:基础功能 是刚需(如理解用户输入、提供有效回复),确保智能体“能用”;进阶功能 是壁垒(如个性化推荐、复杂任务处理),决定智能体
搭建一个AI智能体平台是一个系统工程,需要综合考虑技术架构、组件选型、开发流程和运维管理。基于我们之前讨论的平台组件和功能,以下是搭建AI智能体平台的主要步骤和关键考虑因素。1. 技术栈选择 (Technology Stack Selection):编程语言: 选择适合AI开发、系统编程和大规模部署的语言(如Python, Java, Go)。 AI/ML框架: 集成TensorFlow, PyTorch等机器学习和深度学习框架,支持智能体中的模型训练和推理。 人才: 搭建和运营AI智能体平台需要跨领域的专业人才,包括AI工程师、后端工程师、DevOps工程师、数据科学家等。生态系统: 考虑平台是否需要开放API或SDK,构建开发者社区,形成生态系统。 搭建AI智能体平台是一个持续演进的过程,通常从核心功能开始,逐步完善其他模块,并根据实际应用的需求和反馈进行迭代优化。
AI 智能体的开发框架是一系列工具、库和平台的集合,旨在简化和加速 AI 智能体的构建、训练和部署过程。 AI 智能体应用。 AI 智能体开发框架的共同特点:智能体框架: 定义智能体的结构和行为,包括感知、决策和行动等模块。强化学习算法: 提供多种强化学习算法,用于训练智能体。 环境模拟: 提供模拟环境,用于训练和测试智能体。总而言之,选择合适的 AI 智能体开发框架需要根据具体项目需求进行评估。 理解不同框架的特点和适用场景,可以帮助你做出更明智的选择,并更高效地开发出强大的 AI 智能体。
三个核心观点: 别啥都用智能体 越简单越好 像智能体一样思考 几年前大家刚开始玩AI时,做的都是基础功能——比如总结、分类、提取信息,这些当时觉得超神奇,现在已成标配。 第一点:别啥都用智能体智能体适合处理复杂高价值的任务,不是万能升级方案。啥时候该用智能体? 举个正面例子——写代码为什么适合智能体? ) 总结:AI智能体要用对场景、简单起步、理解它的局限。 智能体不是万金油,找准高价值复杂场景 先做减法,核心三件套跑通再优化 换位思考,理解智能体的局限
AI智能体的开发流程是一个多阶段、迭代的过程,它将机器学习、软件工程和领域知识结合在一起,旨在创建一个能够感知、推理、学习和行动的自主系统。下面是一个详细的AI智能体开发流程。1. 需求分析与概念化 (Requirement Analysis & Conceptualization)这是所有项目的基础,对于AI智能体尤为重要,因为其能力和边界需要清晰定义。 (例如:自动客服、决策支持、图像识别、游戏AI、推荐系统等) 预期目标: 成功衡量标准是什么?(例如:准确率、响应时间、用户满意度、效率提升等) 用户/环境: 智能体将为谁服务?在什么环境下运行? 模型选择与开发 (Model Selection & Development)这是AI智能体的“大脑”构建阶段。 监控、维护与迭代优化 (Monitoring, Maintenance & Iterative Optimization)AI智能体不是“一次性”产品,需要持续的监控和优化。
Chatgpt发布了GPTs,钉钉发布了AI助理,在AI时代 AI agent(智能体)是大模型落地业务场景的主流形式,那什么是AI Agent? 01 — 什么是AI Agent? AI Agent是指人工智能代理(Artificial Intelligence Agent)是一种能够感知环境进行自主理解,进行决策和执行动作的智能体。 因此将大模型作为AI Agent的核心大脑,实现将复杂任务拆解成可以实现的子任务等能力,构成具备自主思考决策和执行任务的智能体。 02 — AI Agent系统架构 一个基于大模型的AI Agent系统可以拆分 LLM(大模型)、记忆(Memory)、任务规划(Planning)以及工具使用(Tool) 的集合。 在LLM为基础的AI Agent系统中,大模型为AI Agent系统的大脑负责计算,并需要其他组件进行辅助。 1.