首页
学习
活动
专区
圈层
工具
发布
    • 综合排序
    • 最热优先
    • 最新优先
    时间不限
  • 来自专栏『学习与分享之旅』

    RAG落地实战

    LangChain4j 系列文章LangChain4j - LangChain4j快速入门实战LangChain4j - 多模态开发踩坑实录LangChain4j - 系统提示词稳住AILangChain4j - 注解式AI服务实战LangChain4j - 让AI不再失忆LangChain4j - LangChain4j 结构化输出实战RAG(Retrieval-Augmented Generation, 很多企业也基于 RAG 搭建了自己的智能客服,⁢可以用自己积累的领域知识回复用户。 LangChain 提供了 3 种 RAG 的实现方式,我把它称为:极简版、标准版⁢、进阶版。 好了,本篇文章就到这里,极简版 RAG 的使用非常简单,适合快速查看效果。

    9610编辑于 2025-11-21
  • 来自专栏周末程序猿

    RAG实战|8种RAG架构浅析

    Naive RAG 简介: Naive RAG 是最基础的检索增强生成架构,采用“索引-检索-生成”的经典流程。 Corrective RAG 简介: Corrective RAG 在传统 RAG 基础上引入了文档质量评估和自我修正机制。 Agentic RAG 简介: Agentic RAG(智能体RAG)将 AI Agent 的规划和推理能力与 RAG 相结合。 Graph RAG 简介: Graph RAG 将知识图谱技术与 RAG 相结合,通过从文档中抽取实体和关系构建知识图谱,并进行社区检测和摘要生成。 SFR RAG 简介: SFR RAG(Salesforce Research RAG)是工业级高质量 RAG 的最佳实践。

    45310编辑于 2025-12-30
  • 来自专栏大模型成长之路

    【大模型学习 | RAG & DeepSeek 实战

    Deepseek & RAG 实战 编者常常有许多材料需要阅读查阅,但自己又比较懒,为此,想在大模型的学习过程中基于RAG技术将本地知识库与大模型结合起来,加快自身的效率。 5️⃣ 界面设计编者基于PYQT5模块设计了一个支持知识库搭建的大模型问答系统:搭建知识库后:模型输出写在最后:✅ 本项目搭建了一个简单的知识库问答系统,用户可以将自己的私人知识库进行搭建,基于RAG技术实现问答系统

    93831编辑于 2025-07-19
  • 大模型RAG进阶实战营教程

    文章首先介绍了RAG技术的基本概念和发展历程,随后详细分析了其核心架构和工作原理。通过多个行业应用案例,展示了RAG技术在实际场景中的强大表现。 一、RAG技术概述RAG技术的基本原理是通过结合信息检索和文本生成两大模块,实现知识增强的智能问答和内容创作。 三、RAG技术的行业应用案例在金融领域,RAG技术正在革新传统的投资研究和客户服务模式。 四、RAG技术的进阶优化策略提升RAG系统性能的关键在于优化检索和生成两个核心环节。 这些综合措施使得RAG系统在实际应用中表现出越来越高的可靠性和实用性。五、挑战与未来发展趋势尽管RAG技术取得了显著进展,但仍面临多项挑战。

    66110编辑于 2025-06-11
  • RAG—Chunking策略实战|得物技术

    一、背 景在 RAG 系统中,即便采用性能卓越的 LLM 并反复打磨 Prompt,问答仍可能出现上下文缺失、事实性错误或拼接不连贯等问题。 某种意义上,分块质量几乎决定了RAG的性能上限——它决定知识是以连贯的上下文呈现,还是退化为无法拼合的碎片。 当分块尊重文档的叙事与结构时,检索的相关性与答案的事实一致性往往显著提升,远胜于一味更换向量模型或调参;换言之,想要真正改善 RAG 的稳健性与上限,首先要把“知识如何被切开并呈现给模型”这件事做好。 PS:本文主要是针对中文文档类型的嵌入进行实战。二、什么是分块(Chunking)分块是将大块文本分解成较小段落的过程,这使得文本数据更易于管理和处理。 目标:为RAG检索创建高内聚、可追溯的块。

    57710编辑于 2025-10-30
  • 来自专栏大模型成长之路

    【大模型学习 | RAG & DeepSeek 实战(二)】

    Deepseek & RAG 实战(二)在【大模型学习 | RAG & DeepSeek 实战】-腾讯云开发者社区-腾讯云文章中,已经实现了基于RAG建立了本地知识库,通过检索相似度最高的知识来辅助大模型的问答系统

    84321编辑于 2025-07-20
  • 极客-RAG快速开发实战|果fx

    RAG 技术概述RAG(Retrieve, Answer, Generate)是一种融合检索和生成的模型架构,常用于问答系统、对话生成等任务。 场景应用RAG可以广泛应用于以下场景:智能问答系统客户支持聊天机器人文档理解与信息提取教育辅导助手原理解析RAG结合了信息检索和生成模型的优点。 实战教学环境配置在开始之前,请确保您的环境中安装了必要的库。 ")retriever = RagRetriever.from_pretrained("facebook/rag-sequence", use_dummy_dataset=True)# 创建RAG模型model 检索过程: 利用RAG的检索机制找到相关文档。生成答案: 基于检索到的文档生成最终的自然语言回答。扩展思路可以通过替换不同的数据集来训练自己的检索器。

    38810编辑于 2024-11-18
  • 来自专栏周末程序猿

    RAG实战|向量数据库LanceDB指南

    LanceDB是一个开源的用 Rust 实现的向量数据库(https://github.com/lancedb/lancedb),它的主要特点是:

    1.4K10编辑于 2025-03-31
  • 西瓜老师AI大模型RAG项目实战

    RAG(检索增强生成)技术应运而生,正逐渐成为构建可信AI系统的核心架构。未来十年,RAG将如何演进?其突破方向又将如何重塑AI与人类的协作模式? 一、RAG的当下定位:可信AI的“基石”而非“补丁”当前RAG系统已从初期的简单文档检索,发展为包含复杂工作流的多层架构:核心价值维度:事实准确性:通过对接权威知识源,有效遏制模型幻觉知识实时性:绕过模型参数冻结限制 系统具备对自身知识状态的元认知,主动发现并填补认知漏洞假设驱动探索:基于现有知识主动提出假设,并通过检索验证完成“思想实验”分布式知识联邦:在保护隐私前提下,实现跨机构、跨领域的知识安全协作与共创三、核心突破方向:构建下一代可信RAG 真正的突破将发生在技术与人文的交叉点:当RAG系统不仅能准确回答问题,更能理解问题的深层含义;不仅能提供事实,更能呈现思考的脉络;不仅能服务个体,更能促进集体智慧的涌现。 在这个未来中,RAG架构将成为我们扩展认知边界、应对复杂挑战的关键基础设施,推动人类文明向更高层次的智慧形态演进。现在播下的种子,将在未来十年结出改变世界的果实。

    19910编辑于 2025-11-26
  • 来自专栏山行AI

    GenAI——LLM结合图谱RAG和LangChain实战指南

    (纯LLM响应) •启用RAG(向量 + 知识图谱上下文) •允许根据数据库中评分高的问题的风格,生成当前对话的高质量支持票据。 text=hello&rag=false (非流式)•http://localhost:8504/query-stream? 实战 对于持续对GenAI的高度兴趣,新的创新每天都在涌现。 检索增强型生成(RAG) 仅仅开发围绕LLM API的包装器并不能保证生成响应的成功,因为与准确性和知识截止相关的众所周知的挑战并未得到解决。 有一个叫做RAG模式的开关,用户可以完全依赖LLM的训练知识(RAG:禁用),或者更有能力的(RAG:启用)模式,其中应用程序使用文本嵌入的相似性搜索和图查询找到数据库中最相关的问题和答案。

    4.8K31编辑于 2023-12-29
  • 来自专栏自然语言处理

    RAG实战-Markdown文件解析思路分析与实现

    最近遇到几个伙伴关于markdown解析的问题,都是比较偏向于实际使用场景的,这里我们一开始我们去做markdown文件解析会自觉的会困在一个陷阱,就是:

    68900编辑于 2025-01-09
  • 来自专栏自然语言处理

    RAG实战】Prompting vs. RAG vs. Finetuning: 如何选择LLM应用选择最佳方案

    为了保持高实用性,我们可以选择以下几种方法之一: Prompt Engineering(提示工程) Fine-tuning(微调) RAG(Retrieval-Augmented Generation, 检索增强生成) 混合方法(RAG + 微调) 影响因素 以下两个重要因素会影响我们的决策: 外部知识需求:你的任务需要多少外部知识。 如何决定: 使用RAG:如果你需要基于自定义知识库生成输出,并且LLM的词汇和写作风格保持不变。 使用微调:如果你想要改变模型的结构(行为)而不是知识。 混合方法(RAG + 微调):如果你的应用需要自定义知识库和模型行为的改变。

    39110编辑于 2024-12-20
  • 来自专栏Datawhale专栏

    RAG 作者:RAG 已死,RAG 万岁!

    一个具有更大上下文窗口的新模型问世,社交媒体上便会充斥着“RAG 已死”的宣言。 RAG 的初衷 五年前,我在 Meta 基础人工智能研究中心(FAIR,前身为 Facebook 人工智能研究中心)的团队提出了 RAG(Retrieval-Augmented Generation,检索增强生成 底线是:您同时需要长上下文 LLM 和 RAG。 但既然“RAG”这个术语似乎如此具有争议性,那我们不妨这样说: 我们不必非得称之为 RAG。 我们可以就叫它 检索 (retrieval)。 RAG 提供了相当于直接翻到相关页面的能力。处理更多 token 不仅更慢,而且极其低效,并且比使用 RAG 精准定位所需信息要昂贵得多。 RAG、微调和大型上下文窗口在 AI 中也是如此。 结论 我们不需要在 RAG 与长上下文窗口、微调或 MCP 之间做出选择。

    51810编辑于 2025-04-24
  • 来自专栏全栈开发工程师

    RAG】001-RAG概述

    RAG】001-RAG概述 0、整体思维导图 下面的知识是基于一个视频教程结合 AI 生成的笔记,我也看了一遍,有了一些印象,但这种印象很快就会消失,知识也就消失了,为了使得知识在我的大脑中停留更长的时间 补充1:RAG 基本逻辑 补充2:RAG 知识库基本逻辑 一、RAG 介绍 1、LLM 的主要局限性 大语言模型(LLM)尽管功能强大,但仍存在以下明显的局限性: 时效性问题:模型的知识在预训练后就固定了 概述 1、RAG 的概念 RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了检索和生成技术的文本处理方法,主要用于提高语言模型的输出质量。 2、RAG 的工作原理 RAG 的核心工作流程包含以下步骤: 知识库构建: 收集和处理文档资料 将文档切分为适当大小的文本块 使用向量化模型将文本转换为向量并存储 检索过程: 接收用户查询并向量化 在向量数据库中搜索相似内容 获取最相关的文本片段 生成过程: 将检索到的相关内容与用户问题组合 构建合适的提示词(Prompt) 通过 LLM 生成最终答案 3、RAG 的应用场景 RAG 技术在多个领域都有广泛应用

    56310编辑于 2025-03-25
  • 来自专栏AgenticAI

    实战微软新一代RAG:GraphRAG强大的全局理解能力,碾压朴素RAG

    微软近日开源了新一代RAG框架GraphRAG[1],以解决当前RAG在大型语料库上全局理解问题。 当前RAG主要聚焦于局部检索能力,即根据查询语句在向量库中匹配部分知识,然后通过大型语言模型合成这些检索到的信息,生成一个自然流畅的回答。 RAG概述 大语言模型(LLM)是在大量数据上训练,但他们并不是在我们私有数据上训练,因此要想让LLM能够回答我们私有数据集上的问题,我们就得使用一种叫做检索增强生成(RAG)的技术。 **这类问题需要查询聚焦摘要(Query focused summary)而不是像我们上述RAG系统那样显式检索,现有的QFS方法无法扩展到RAG系统索引的文本量。 而GraphRAG结合知识图谱,RAG和QFS这些方法的优势,它可以根据用户问题的普遍性和要索引的源文本量进行扩展。

    86510编辑于 2025-03-18
  • 来自专栏架构驿站

    RAG 架构实战:Fixed-Size Chunking(固定切块) 解析

    众所周知,在构建 RAG(Retrieval-Augmented Generation,检索增强生成)系统的过程中,文档切块策略往往决定了模型检索质量的上限。 HelixDB 旨在为下一代 RAG 应用提供一个更智能、更灵活的数据存储基础,让你能够基于内容相似性和结构化关系进行更丰富的上下文检索。 如果你正在探索 RAG 的未来,并寻求能够同时处理向量和复杂关系的强大开源数据解决方案,那么理解 HelixDB 至关重要。 执行运行: (base) lugalee@labs rag % /opt/homebrew/bin/python3 /Volumes/home/rag/fixedsiz.py 原始文本被切分成了 2 个块 如果你正在探索 RAG 的未来,并寻求能够同时处理向量和复杂关系的强大开源数据解决方案,那么理解 HelixDB 至关重要。

    31110编辑于 2025-05-25
  • 来自专栏机器学习原理

    rag

    RAG技术全面解析:原理、应用与优势 引言 在当今快速发展的人工智能领域,检索增强生成(Retrieval-Augmented Generation, RAG)技术已成为一个备受关注的话题。 RAG工作流程 RAG的工作流程可以分为以下几个步骤: 用户查询:用户提出一个查询,系统首先会将这个查询传递给检索模型。 RAG技术的应用场景 RAG技术在众多实际应用场景中显示出其独特的优势,这是其他单一技术难以比拟的。下面我们详细探讨RAG技术的几个主要应用场景。 RAG技术可以在知识图谱构建过程中发挥重要作用。通过利用检索模型从大规模文档库中找到最新的相关信息,RAG系统可以识别出新的实体和关系。 RAG技术的优势与挑战 RAG技术在很多方面展示了其显著的优势,但它也面临着一些挑战。以下我们将详细探讨RAG技术的优势和挑战。

    51511编辑于 2024-06-27
  • 来自专栏自然语言处理

    RAG Logger:RAG日志记录工具

    您听说过 RAG Logger 吗? 它是一款专为检索增强生成 (RAG) 应用程序设计的开源日志记录工具! 据说它可以作为 LangSmith 的轻量级替代方案,满足 RAG 特定的日志记录需求。 查询、搜索结果、LLM 交互和性能指标可以以 JSON 格式记录。 特点 通过查询跟踪详细了解用户问题! RAG Logger 为 RAG 应用程序的性能监控和调试提供了强大的支持,对吗? 特别推荐给那些想要提高应用程序开发效率的人。 请参阅此处的详细信息: RAG Logger GitHub 仓库

    26110编辑于 2025-01-07
  • 西瓜老师:2025AI大模型RAG项目实战

    AI大模型RAG项目实战:从理论到落地的全面指南在人工智能技术飞速发展的今天,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为连接静态大模型与动态世界的关键桥梁 本文将系统性地介绍RAG技术的核心原理、实战应用场景以及项目落地经验,为技术实践者提供从理论到实践的完整参考框架。 RAG通过将企业知识库纳入检索范围,使通用大模型能够针对特定业务场景提供精准回答。RAG系统架构深度解析一个完整的RAG系统包含三大核心模块:检索器、知识库和生成器,形成从查询到响应的闭环工作流。 行业应用场景与实战案例RAG技术已在多个领域展现出变革潜力,推动行业从效率革新到业务重构的深度转型。教育医疗领域,RAG系统能够结合最新医学研究和病例数据,为医生提供诊断支持。 实战项目锤炼最为关键。可从相对简单的应用开始,如构建个人知识管理系统,逐步挑战复杂场景。某成功案例显示,经过3-5个完整项目周期,工程师可形成稳定的技术判断力和问题解决能力。

    25810编辑于 2025-11-26
  • 来自专栏数据派THU

    独家 | 进阶RAG-提升RAG效果

    在我的上一篇博客中,我深入地介绍了RAG以及它是如何用LlamaIndex实现的。然而,RAG在回答问题时经常遇到许多挑战。 RAG工作流程分解 首先,为了增强对RAG的理解,我们将RAG工作流程分解为三个部分,并对每个部分进行优化以提高整体表现。 模块化RAG 模块化RAG集成了多种方法来增强RAG的不同组成部分,如在检索器中加入相似度检索的搜索模块和应用微调方法 RAG融合(RAG Fusion) RA融合技术结合了两种方法: 多查询检索 利用 总结 本文讨论了优化RAG管道各部分和增强整体RAG流水线的各种技术。您可以在您的RAG流水线中使用这些技术中的一种或多种,从而使其更加准确和高效。 原文标题:Advance RAG- Improve RAG performance 副标题:Ultimate guide to optimise RAG pipeline from zero to advance

    1.3K20编辑于 2024-06-28
领券