还在为RAG应用开发头疼吗?别急,今天给大家推荐五款完全开源免费的RAG框架,覆盖自动优化、多模态处理、本地部署、生产环境支持等多种场景,助你轻松搞定RAG开发! 1. AutoRAG:自动优化,省心省力 核心优势:自动寻找最优RAG流程,告别手动调参! ✨ 特色功能:支持用你的评估数据测试不同RAG模块,找到最适合的方案。 适用场景:适合需要优化RAG系统性能的开发者。 https://github.com/Marker-Inc-Korea/AutoRAG 2. 适用场景:适合企业级应用部署,需要稳定可靠的RAG框架。 https://github.com/truefoundry/cognita 5. ✨ 特色功能: 提供50+针对企业任务优化的小型模型 支持完整的RAG生命周期 适用场景:适合企业环境中需要专业化、轻量级解决方案的场景。
然而,目前各种基于图的 RAG 方法缺乏统一框架,难以在相同实验环境下系统比较和深入分析。 研究贡献 1、创新统一框架:首次提出涵盖所有现有 Graph-based RAG 方法的统一框架,从高层次明确定义图构建、索引构建、操作符配置及检索生成四个关键步骤。 2、深入方法比较:在统一框架下,系统地评估和对比 12 种主流 Graph-based RAG 算法,详细分析每种方法的优势与局限性。 6、前瞻性研究方向:基于详细的实验结果与分析,提出了多种前瞻性研究机会与实践方案,有望推动 RAG 领域未来研究。 研究与实验方法 本文提出一个全新的统一框架,将基于图的 RAG 方法划分为图构建、索引构建、操作符配置及检索与生成四个核心阶段,以实现对现有方法的系统比较与深入分析。
/KG_RAG),该框架利用生物医学知识图谱SPOKE与大型语言模型相结合,有效的提升了LLM在医疗领域的问答效果。 KG-RAG框架介绍 KG-RAG框架,较好的结合了生物医学知识图谱SPOKE和LLM的优势。 研究人员对KG-RAG框架进行了广泛的测试,包括单跳和双跳提示、药物再利用查询、生物医学真假问题和多项选择题。 通过这种方法,KG-RAG框架能够有效地从专业文本中提取和识别疾病实体,并将其与丰富的生物医学知识库相连接,从而生成准确、可靠的生物医学相关信息。 在其他领域如何去应用KG做RAG,一方面可以扩展该框架,另外一方面,也要结合自己的实际场景去定制具体的策略。
这个也是在后续开发框架的过程中,我们可以选取langchian的document作为处理对象,但是文件解析需要自己去写和实现。
向量存储旨在高效处理大量向量,提供根据特定标准添加、查询和检索向量的功能。它可用于支持语义搜索等应用程序,在这些应用程序中,您可以查找与给定查询在语义上相似的文本段落或文档。
RAG领域已经取得了相当大的发展,这篇论文的是如何分解RAG过程,加入多文件检索、记忆和个人信息等定制化的元素。 使用RAG的一个优点是其实现的简单。但是在agenic RAG、多文档搜索和添加会话历史等方面,还需要很多的手动工作。代理RAG是将代理层次结构与RAG实现相结合的地方,这会带来很大的复杂性。 UniMS-RAG会对这些元素进行优先排序。 3、持续改进 论文的方法还包括一种自我细化推理算法,通过结合RAG会带来很大程度的可检查性和可观察性。 UniMS-RAG框架 UniMS-RAG统一了计划、检索和阅读任务的训练过程,并将它们集成到一个综合框架中。 提出的统一多源检索-增强对话系统(UniMS-RAG)使用大型语言模型(llm)同时作为计划者、检索者和读者。 这个框架在推理过程中还引入了自改进,使用一致性和相似性分数来改进响应。
提供了高效且可靠的相似性聚类和检索方法,可支持十亿级别向量的搜索,是目前最为成熟的近似近邻搜索库 官方资源地址https://github.com/facebookresearch/faiss Faiss基础依赖 1)矩阵计算框架 :Faiss与计算资源之间需要一个外部依赖框架,这个框架是一个矩阵计算框架,官方默认配置安装的是OpenBlas,另外也可以用Intel的MKL,相比于OpenBlas使用MKL作为框架进行编译可以提高一定的稳定性 使用方法 Faiss是为稠密向量提供高效相似度搜索的框架(Facebook AI Research),选择索引方式是faiss的核心内容,faiss 三个最常用的索引是:IndexFlatL2, IndexIVFFlat 200]) contexts=faiss_retriever.retrieve("2022年冬奥会开幕式总导演是谁") print(contexts) 参考资料 Faiss应用 - 召回框架
一个具有更大上下文窗口的新模型问世,社交媒体上便会充斥着“RAG 已死”的宣言。 底线是:您同时需要长上下文 LLM 和 RAG。 但既然“RAG”这个术语似乎如此具有争议性,那我们不妨这样说: 我们不必非得称之为 RAG。 我们可以就叫它 检索 (retrieval)。 RAG 提供了相当于直接翻到相关页面的能力。处理更多 token 不仅更慢,而且极其低效,并且比使用 RAG 精准定位所需信息要昂贵得多。 警惕错误的二分法 在谷歌搜索“RAG vs”,你会看到一长串建议的查询补全——“长上下文”、“微调”、“MCP”。这种框架设定制造了一种人为的选择,并没有反映这些技术实际上如何协同工作的最佳方式。 RAG、微调和大型上下文窗口在 AI 中也是如此。 结论 我们不需要在 RAG 与长上下文窗口、微调或 MCP 之间做出选择。
【RAG】001-RAG概述 0、整体思维导图 下面的知识是基于一个视频教程结合 AI 生成的笔记,我也看了一遍,有了一些印象,但这种印象很快就会消失,知识也就消失了,为了使得知识在我的大脑中停留更长的时间 补充1:RAG 基本逻辑 补充2:RAG 知识库基本逻辑 一、RAG 介绍 1、LLM 的主要局限性 大语言模型(LLM)尽管功能强大,但仍存在以下明显的局限性: 时效性问题:模型的知识在预训练后就固定了 概述 1、RAG 的概念 RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了检索和生成技术的文本处理方法,主要用于提高语言模型的输出质量。 2、RAG 的工作原理 RAG 的核心工作流程包含以下步骤: 知识库构建: 收集和处理文档资料 将文档切分为适当大小的文本块 使用向量化模型将文本转换为向量并存储 检索过程: 接收用户查询并向量化 在向量数据库中搜索相似内容 获取最相关的文本片段 生成过程: 将检索到的相关内容与用户问题组合 构建合适的提示词(Prompt) 通过 LLM 生成最终答案 3、RAG 的应用场景 RAG 技术在多个领域都有广泛应用
RAG技术全面解析:原理、应用与优势 引言 在当今快速发展的人工智能领域,检索增强生成(Retrieval-Augmented Generation, RAG)技术已成为一个备受关注的话题。 RAG工作流程 RAG的工作流程可以分为以下几个步骤: 用户查询:用户提出一个查询,系统首先会将这个查询传递给检索模型。 RAG技术的应用场景 RAG技术在众多实际应用场景中显示出其独特的优势,这是其他单一技术难以比拟的。下面我们详细探讨RAG技术的几个主要应用场景。 RAG技术可以在知识图谱构建过程中发挥重要作用。通过利用检索模型从大规模文档库中找到最新的相关信息,RAG系统可以识别出新的实体和关系。 RAG技术的优势与挑战 RAG技术在很多方面展示了其显著的优势,但它也面临着一些挑战。以下我们将详细探讨RAG技术的优势和挑战。
在RAG系统中实际的事实召回评估可能存在以下问题: 在低质量生成的文本中自动验证真实的、独立的陈述和模拟低质量的检索增强生成(RAG)场景并没有得到太多的关注。 RAG系统涉及许多组件,例如知识库、检索、提示公式和语言模型,这些都需要大量的调优。因此效率对实际执行至关重要。 Facts As A Function faaf是一个为RAG系统量身定制的事实召回评估框架,它可以用来创建一个测试数据集,并执行自动的事实召回评估。 评估数据是通过真实事实和人工注释来增强的。 WikiEval的特点是问题和答案对,答案具有可变的事实质量,可以模拟有缺陷的RAG反应。 然后测试RAG的假设反应(在这种情况下,无根据的答案和糟糕的答案)对提取的事实的召回。 依靠提示来验证事实往往会高估陈述的真实性,尤其是在文本缺乏重要信息的情况下。
大家常说 RAG 应用是:一周出 demo,半年用不好。那么怎么评估 RAG 应用是否能够上生产了呢?如果公司人手足够,当然可以人工测试评估准确性,但指标未免单一。 本文介绍一个全自动化的 rag 应用评估框架 ragas。 RAGas(RAG Assessment)[1]RAG 评估的缩写,是一个专门的解决方案用于评估、监控和提升生产环境中大语言模型(LLM)和检索增强生成(RAG)应用的性能,包括用于生产质量监控的定制模型 然后就是使用 ragas 框架的 API 来生成测试集了,首先初始化测试集生成器。 如果你想深入RAG也可以考虑购买这本《大模型RAG实战》,更为系统地学习。
看这篇就够了》,本文探一探蚂蚁开源的另外一套知识增强生成框架 KAG(Knowledge Augmented Generation),专门用于构建垂直领域知识库的逻辑推理问答框架,论文中提到在电子政务达到了 KAG 简介 KAG 可以有效克服传统 RAG 向量相似度计算的歧义性和 OpenIE 引入的 GraphRAG 的噪声问题,支持逻辑推理、多跳事实问答等。 核心功能 2.1 LLM 友好的语义化知识管理 私域知识库场景,非结构化数据、结构化信息、业务专家经验 往往三者共存,KAG 提出了一种对大型语言模型(LLM)友好的知识表示框架,基于 DIKW(数据 3.2 开发者模式 即使是开发者模型,也仍然需要安装刚才的 Docker Compose,其中启动了一些依赖服务,KAG 框架并不包含前端或者服务端的代码。
1.4 Self-RAG实施步骤 根据对上图(Figure-1)的理解,可以分为两部分:RAG 和 Self-RAG,我们分别来看一下: 1.4.1 常规方法 RAG Retrieval-Augmented Self-RAG 核心算法 SELF-RAG是一个增强语言模型质量和事实性的框架,通过检索和自我反思实现,而不损失原始创造性和多功能性。 该框架使模型可以根据检索到的段落生成文本,并使用“反思tokens”自我评估输出的相关性和完整性。 与普通的RAG方法不同,SELF-RAG更加选择性地进行检索,确保从引用源获得完整支持。 此外,框架还允许设定一个阈值。 (2)如果生成的token是 Retrieve=Yes, 且在所有输出tokens中的标准化值超过了指定的阈值,则触发检索。 2.3.2 基于评判tokens的树解码(Tree-decoding with critique tokens) (1)基本框架 第1步:当每一步进行到t时,依据是否需要检索,可以基于硬或软条件进行。
您听说过 RAG Logger 吗? 它是一款专为检索增强生成 (RAG) 应用程序设计的开源日志记录工具! 据说它可以作为 LangSmith 的轻量级替代方案,满足 RAG 特定的日志记录需求。 查询、搜索结果、LLM 交互和性能指标可以以 JSON 格式记录。 特点 通过查询跟踪详细了解用户问题! RAG Logger 为 RAG 应用程序的性能监控和调试提供了强大的支持,对吗? 特别推荐给那些想要提高应用程序开发效率的人。 请参阅此处的详细信息: RAG Logger GitHub 仓库
RAG工作流程分解 首先,为了增强对RAG的理解,我们将RAG工作流程分解为三个部分,并对每个部分进行优化以提高整体表现。 数据清洗在RAG框架中起着至关重要的作用。RAG的效果取决于数据清洗和组织的好坏。删除不必要的信息,如特殊字符、不需要的元数据或文本。 删除不相关的文本/文档:删除所有不需要LLM来回答的不相关文档。 它帮助框架识别包含与用户查询相关信息的最相关子文档。 3. 一旦建立了与子文档的对齐,它就会检索与该子文档相关联的整个父文档。在所示的图片中,最终获得了父块。 4. 框架现在可以访问整个父文档,而不是仅仅依赖于子文档的内容。 5. 句子窗口检索 这种分块技术与上面的非常相似。 模块化RAG 模块化RAG集成了多种方法来增强RAG的不同组成部分,如在检索器中加入相似度检索的搜索模块和应用微调方法 RAG融合(RAG Fusion) RA融合技术结合了两种方法: 多查询检索 利用
为什么要用 RAG ? RAG 引用信息来源是用户可以核实答案,因此其透明透非常高,这增强了人们对模型输出结果的信任。 透过获取与特定领域数据,RAG能够为不同领域提供专业的知识支持,定制能力非常高。 由于 RAG 不需更新模型参数,因此在处理大规模数据集时,经济效率方面更具优势。 不过虽然RAG有许多优势在,但这3种方法并不是互斥的,反而是相辅相成的。 什么是 RAG ? 这篇章旨在介绍 RAG 的过程与其使用的相关技术。 RAG 生态系 RAG 的生态系蓬勃发展,在水平领域,从最初的文本问答领域以外,RAG 的应用逐渐拓展到更多模态数据,包括图像、代码、结构化知识、影音等。 在这些领域,已经涌现许多相关研究成果。
当以黑盒方式来评估 RAG 应用时,我们看不到 RAG 应用的内部,只能从输入给 RAG 应用的信息和它返回的信息来评估 RAG 的效果。 我们使用这三个信息来评估 RAG 应用的效果,黑盒方式是一种端到端的评估方式,也比较适用于评估闭源的 RAG 应用。 当以白盒方式来评估 RAG 应用时,我们能看到 RAG 应用的内部所有流程。 )、RAG 系统的回答(RAG's response)。 Ragas 指标种类丰富多样,对 RAG 应用的框架无要求。 TruLens-Eval:Trulens-Eval 是专门用于评估 RAG 指标的工具,它对 LangChain 和 Llama-Index 都有比较好的集成,可以方便地用于评估这两个框架搭建的 RAG
然而,像Contextual.ai提出的基于情境语言模型(CLMs)的“RAG 2.0”这样的案例却很少见,它试图让目前最流行(如果不是最受欢迎的话)的生成式AI模型实现方式之一——标准检索增强生成(RAG 提出这种主张的,恰恰是RAG的创造者。 虽然这是对生产级生成式AI现状的一次重大改进,但整个子领域仍存在一个疑问:RAG是否正在走向末路,这些创新是否只是在对一个已经死去的马施加无效的鞭打? 这就是RAG发挥作用的地方。 这个类比背后的原因是因为标准的RAG系统组装了三个不同的组件,这些组件是分别预训练的,并且根据定义,它们本来就不应该在一起。 相反,RAG 2.0系统从一开始就被定义为“一体”。 总的来说,我们很快就能看到处理极长序列的成本仅为现在的一小部分,这应该会增加对RAG架构需求的怀疑。 当那个时刻到来时,我们可以几乎肯定它会发生,我们还会依赖RAG吗?
【RAG】001.1-RAG相关核心概念 RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合信息检索与生成模型的混合架构,旨在提升生成的准确性和可信度。 其核心概念可归纳为以下六个方面: RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合信息检索与生成模型的混合架构,旨在提升生成的准确性和可信度。 上下文融合(Context Fusion) 上下文融合是指将检索到的知识与用户输入有效整合的过程,这是RAG系统中至关重要的环节。 通过多维度指标的综合分析,可针对性优化RAG系统的薄弱环节,实现高效可靠的知识增强生成。 6. 应用场景与挑战 典型场景:开放域问答、文档摘要、客服自动化、代码生成。 理解这些概念有助于设计高效、可靠的RAG系统,尤其在减少生成错误与提升信息可信度方面具有显著优势。 8.