成像光学成像光学是传统几何光学的核心内容,成像光学系统包括三个部分:物体、透镜和像。 成像光学的主要研究内容就是研究怎样的透镜(或成像系统)使像与物的一致性最高,这里一致性包含拓扑结构、几何比例和光色等方面的一致性。 成像光学的根本任务是利用成像系统实现不失真或尽可能少失真的信息变换或传输。光学成像主要分为三类:小孔成像、镜面成像和透镜成像。 非成像光学系统非成像光学系统按应用可以分为两类:集光系统和配光系统,集光系统应用于太阳能或光电检测中;配光系统主要用于照明设计,尤其是LED 照明设计。1. 非成像光学理论1 光展理论光展(光学扩展量)来自法语单词etendue 是几何光学系统中的一个重要光学属性,用来刻画光学系统的通光能力。
TB-PET揭示体内复杂的骨骼代谢网络 综述 深度学习在神经成像领域的前景与挑战 功能连接矩阵 | 双向LSTM深度时间组学习针对轻度认知障碍 PCA、SVD深入浅出与python代码 ICA
芯片镀膜 近年来,IMEC(欧洲微电子研究中心)采用高灵敏CCD芯片及SCMOS芯片研制了一种新的高光谱成像技术,在探测器的像元上分别镀不同波段的滤波膜实现高光谱成像,此技术大大降低了高光谱成像的成本。 光源是高光谱成像系统的一个重要部分,它为整个成像系统提供照明;分光设备是高光谱成像系统的核心元件之一,分光设备通过光学元件把宽波长的混合光分散为不同频率的单波长光,并把分散光投射到面阵相机上;相机是高光谱成像系统的另一个核心元件 高光谱的优势 随着高光谱成像的光谱分辨率的提高,其探测能力也有所增强。因此,与全色和多光谱成像相比较,高光谱成像有以下显著优势。 1. 有着近似连续的地物光谱信息。 医学诊断 高光谱成像是一个新兴的,非破坏性的,先进的光学技术,它具有光谱和成像的双重功能,这种双重功能使得高光谱成像能够同时提供实验对象的化学和物理特征,并具有良好的空间分辨率。 高光谱成像作为一种特殊光学诊断技术,具有成像系统多样化、研究对象广泛化、临床诊断实用化和分析方法功能化等特征,具有原位实时活体诊断疾病(特别是肿瘤)的潜力,临床应用前景广阔,值得深入研究。
热成像红外系统中由许多专业名词与冷有关红外热成像,冷光阑、冷屏、冷反射等,刚接触红外光学系统时会产生疑惑,现对这些名词做一些解释。 冷阑效率 如果光学系统的出瞳恰好位于冷阑位置,且大小相等或稍大于冷阑口径,则探测器只能看到成像光束和部分冷阑挡板,此时称系统具有100%的冷阑效率。 大多数场合都采用二次成像法来实现100%的冷阑效率——将前置光学系统的孔径光阑再次成像于冷阑平面上。 图2 二次成像光学系统 冷反射 冷反射是红外探测器看到由杜瓦瓶发出的,经红外光学系统的各透镜表面反射回来的自身冷像。 由于低温腔与镜筒其他部分温度的明显差异,探测器除了接收到正常成像的景物辐射外,还通过红外光学系统中折射面的微弱反射,接收到本身及周围低温腔冷环境的影像,形成冷像,即冷反射。 参考 张以谟.
转载自:新战略3D视觉研究院 原文地址:深度解析机器视觉四大光学成像方法 ---- 工业4.0时代,三维机器视觉备受关注,目前,三维机器视觉成像方法主要分为光学成像法和非光学成像法,这之中,光学成像法是市场主流 02 扫描3D成像 三维扫描的基本定义是通过一定方法获取被扫描物体的几何构造和表面图像。扫描3D成像方法可分为扫描测距、主动三角法、色散共焦法。 由于单次投影曝光和成像时间短,抗振动性能好,适合运动物体的3D成像,如机器人实时运动引导,手眼机器人对生产线上连续运动产品进行抓取等操作。 目前立体视觉3D成像方法可以分为单目视觉、双目视觉、多(目)视觉和光场3D成像等。 单目视觉深度感知线索通常有:透视、焦距差异、多视觉成像、覆盖、阴影、运动视差等。 多(目)视觉成像也称多视点立体成像,用单个或多个相机从多个视点获取同一个目标场景的多幅图像,重构目标场景的三维信息。其基本原理如下图所示。
上一次,我在文章 <压缩成像与使用压缩感知的高速摄影技术> 中介绍了压缩成像的基本原理,即将高速摄影时的信号采集表达为一个欠定问题,通过测量信号y和先验信息,恢复出原始信号x。 这一次,我来讲讲这个技术如何应用到光学超分辨率这个领域中。 众所周知,大分辨率的常规传感器已经非常普及了。你现在去买个手机,没有千万像素都不好跟人打招呼然而,这种情况仅限于可见光传感器。 这个想法来自2008年Duarte等发表的论文 <通过压缩采样的单像素成像>,单像素相机后续简称为SPC (Single Pixel Camera) 这是作者在论文中展示的原型设备。 SPC重建图像依然基于图中所示的压缩成像的重建原理,作者利用了空域梯度的稀疏性作为先验条件。 但仅仅利用SPC的测量值和基本的空域稀疏性,在重建动态场景时会出现各种各样的问题。 除了像LiSens这样的线状传感器设计,也有块状传感器形式的设计,但总体来说都是利用了压缩传感的技术,实现了光学超分辨率。
图片热像与光学成像叠加校正 因为手机摄像头与红外模块不在同一点,所以在探测近处物体时会发生两个影像错位的现象,距离 越近错位越严重,为了校正两种图像,可以点击工具控件中的平移、缩放、宽高比例来调整。 (2)人站在距离手机 D 米处,调节屏幕上的平移、缩放工具,直到热像与光学成像完全重合,点击 右侧铅笔图标,完成此距离的叠加校正参数更新。
,研究团队为显微成像和诊断开发了一个简化的工作流程,从而改善了这些障碍。 SRH(受激拉曼组织学,Stimulated Raman Histology)是一种光学成像方法,可以提供未经处理的生物组织的快速、无标签、亚微米分辨率的图像。 它结合了“受激拉曼组织学”(stimulated Raman histology,SRH)、无标签光学成像方法和深度卷积神经网络(CNNs),以自动化的方式在床边几乎实时地预测诊断,为组织诊断创造了一条独立于传统病理实验室的互补途径 在此期间,SRH保存了成像组织的完整性,可用于下游分析检测,并与现代分子诊断实践很好地结合。 因此,可以预测将光学组织学和深度学习相结合的类似工作流程可应用于皮肤科、头颈外科、乳腺外科和妇科,其中术中组织学对临床护理同样重要!
(1)折射率每个牌号的光学玻璃均按下表所列的光谱线给出折射率,所记载的折射率依据(4)项的色散曲线方程式计算得出。 (3)特殊色散性一般光学玻璃的绝大部分,部分色散比和阿贝数之间存在如下线性关系,这样的硝材被称为正常部分色散玻璃,与此相反,如果在领域图上偏离这条直线的玻璃被称为特殊部分色散玻璃,特殊色散性的大小以“正常玻璃
今天小编就给大家介绍一种无害、非介入的新型层析成像技术——光学相干断层扫描技术 (Optical Coherence Tomography,简称 OCT),简而言之就是利用无毒无害的光波进行人体组织的成像 OCT技术具有大量的优点:无害、无损伤,非介入,图像分辨率高且操作简单便携,尤其适合眼科检查及其他光学检测领域。 ? 目前OCT技术的发展方向为自适应光学、OCT分子成像法和OCT图像的三维重构。 结束语 OCT技术是一种近年来发展较快的扫描成像技术,由于其无伤害、非介入的特点,特别适合眼科、牙科的生物组织成像。 对医学图像处理感兴趣的小伙伴可以在公众号菜单栏回复"医学"进群交流哦 参考文献(部分) [1]刘晓梅,李梦月,周敏.光学相干层析成像技术发展及应用[J].山东农业工程学院学报,2017,34(03):47
这一篇笔记主要介绍光学相控阵列。 光学相控阵列(optical phased array,以下简称OPA), 即通过调控阵列中不同通道光场的相位,实现光束传播方向的偏转与调节,示意图如下, ? 得益于集成光学的发展,基于硅光、InP系统的光学相控阵列都已经在实验室实现。典型的结构如下图所示,有点类似阵列波导光栅结构(AWG)。黄色区域为相位调制区域。 ? (图片来自文献3) 光学相控阵列可应用在激光雷达(LIDAR)、光学成像、空间光通信等领域。基于OPA的激光雷达,通过动态调节光束的出射角度,接收其反射信号,从而知晓目标的位置、形貌等信息。 如果说激光雷达是无人驾驶汽车的眼睛,那么光学相控阵列决定了这个眼睛的视场、反应速度。 以上是对光学相控阵列的原理和应用的简单介绍。 光学相控阵列通过实现不同单元间的相位差,实现光束的偏转,从而应用在探测、测距、通信等领域,应用非常广泛。但是目前片上集成的光学相控阵列还处于研究阶段,有许多工程化的问题需要解决。
我好像喜欢一切和成像的东西~这篇文章全无条理,更加像是自己平时阅读的一个记录,可是在草稿箱也不便于阅读,整理一下发出来,标签打为杂文。 成像里面的一些概念 焦点是从无穷远处物体出发的光线经过光学系统后会聚的点。但这只是概念中的一个理想点,在现实世界中,焦点会存在一定的空间分布,称为弥散圆。 这种非理想的焦点通常源于光学系统的像差(aberration)。 所有镜头都可以对无穷远处的物体成清晰像,但对于非常靠近镜头的物体则存在一定的限制,超过限制后成像开始模糊。 对,还看到一个光学算法工程师的职位,有点意思 另外,今年3NM的芯片也可以做了~ 最后是一个小巧的舵机开关 https://www.digchip.com/datasheets/parts/datasheet
折反射成像系统与人眼物理模型 折反射成像系统是一种特殊的成像系统,让我摘录一段Wikipedia的定义: 折反射光学系统是一种将折射和反射结合在一个光学系统中的光学系统,通常通过透镜(屈光镜)和曲面镜( 折反射组合用于聚焦系统,如探照灯、前照灯、早期灯塔聚焦系统、光学望远镜、显微镜和长焦镜头。其他使用透镜和反射镜的光学系统也被称为“折反射”,例如监视折反射传感器。 下面是一个典型示例: 绝大多数折反射镜头都有一个特点,即:成像器件(例如传感器)和光学器件是紧密绑定在一起的。 而角膜成像系统的作者却敏锐的观察到,人眼+对着人眼拍摄的相机,也构成了一个折反射光学系统,只不过此时成像器件和光学反射系统不再是绑定在一起的,当眼球转动时,整个成像系统的光路会相应的发生改变。 角膜成像系统的进一步分析 有了前面的铺垫,作者进一步分析了整个角膜成像系统的下面几个特征: 视点轨迹(焦散表面) 视场角 分辨率 对极几何 这里面的数学和光学知识挺多,我们就直接看看一些比较容易理解的点吧
核心优势一 ANSYS SPEOS光学仿真软件通过CIE标准认证,采用统一眩光评价模型 UGR,对不舒适眩光进行分析评价,找出眩光产生原因,更改设计方案控制或消除眩光。 ANSYS SPEOS通过对高铁或地铁列车内部环境进行光学模拟,配合环境光源进行眩光分析,了解其产生机理,在设计前期进行最大的设计改进规避眩光,优化光环境设计。 虽然说,在建筑设计中无法完全规避眩光,但是我们可以采用光学仿真分析,有效并尽可能规避一些眩光现象。
成像系统将空间分成物空间(object space)和像空间(image space),有时称“物方”和“像方”。 如果物空间中一个物点P发出的发散球面波经过成像系统变换成一个会聚球面波,球面波中心为P',则此系统称为理想光学系统,亦即理想光学。系统将物方的同心光束转换成像方的同心光束。 理想光学研究光线在理想光学系统中的传递和变换,具有以下特点:(1)物方每一个点对应像方一个点(共轭点),又称“点点成像”。(2)物方每一条直线对应像方一条直线(共轭线)。 理想光学系统只是实际光学系统的近似模型。 当物点发射的光束的孔径角足够小,满足sin u ≈ tan u ≈ u且轴外物点和光轴的距离与系统的参数(如焦距)的比足够小时,实际成像系统的行为可以用理想光学来近似描述。
本文记录《机器视觉》 第二章图像成像原理相关内容,主要介绍图像是如何产生的。 成像的问题 从三维“世界”到二维图像平面的映射过程,我们将揭示出关于成像的两个核心问题: 是什么决定:物体表面某一点的像(在像平面中)的位置? 是什么决定:物体表面所成的像的亮度? 这个亮度模式是如何在一个光学成像系 统中生成的? 成像域的深度是指:物体能够被聚焦得“足够好”的距离范围,“足够好”是指:模糊光斑的直径小于成像仪器的分辨率。 成像域的深度依赖于我们所使用的传感器,但是,不管我们使用什么样的传感器,都有这样的规律:透镜的直径越大,成像域的深度就越小。同时,我们可以看出:使用大的光圈会增大聚焦误差。
并行光学传输在并行光学 (Parallel optics) 的信号传输中,链路两端的并行光模块中含有多个发射器和接收器,采用多条光纤,信号通过多条路径传输和接收,典型的光模块类型包括SR4,SR8,PSM4 MT(MPO)插芯和光纤阵列FA多通道微型连接组件是支持并行光互连的关键部件,用于模块外部光接口连接与模块内部光学耦合,能够集成到光模块板上。 WDM波分光学传输波分复用技术 (WDM) 可以实现单根光纤对多个波长信号的传输,这会成倍提升光纤的传输容量,已经被广泛应用在光通讯的中长距离传输和数据中心的互联中,典型光模块类型如FR4、FR8和LR4 利用自由空间光学(Free Space Optics)设计,结合准直器,用4个WDM波长的滤光片进行合波和分波。 如下400G Rx光学集成组件基于Z-block自由空间技术,集成了400G高速光收发模块的ROSA端的所有光学组件,包含Receptacle、准直器、Z-block、lens array、棱镜和底板。
红外热成像技术的基本原理 承压君带大家见识一下红外热成像技术。通常我们在一些公共场合中常看到的测温仪: 那么,它靠什么原理呢? 其实,红外热成像检测的基本原理是捕捉待检测设备发出的红外辐射红外热成像,并形成可见的图像,物体温度越高,红外辐射量越大。不同的温度、不同的物体辐射的红外线的强度不同。 红外热成像技术就是将红外图像转换成辐射图像并从中反映出物体不同部位温度值的技术。其成像的基本原理如图1所示。 红外热成像技术成像原理 待测物体 (A) 辐射的红外能量,经光学镜片 (B) 聚焦于探测器 (C) 上,并引起光电反应,电子装置 (D) 读取该反应,从而将热信号转换成电子图像 (E),并显示在屏幕上 下次红外热成像,特设观察员继续带你去了解红外热成像技术在压力容器、压力管道方面的应用。 本文共 1032 个字数,平均阅读时长 ≈ 3分钟
之前部门有一个光学工程专业的研究生,她的毕业论文是关于光纤传感的(具体题目忘了),问她监控什么参数的,她答不上来,说是老师的项目,她只负责有限元仿真。。。后来发现她ansys也不会用。 使用光进行传感、测量和控制的设备被称为光学传感器。光学传感通常是非接触式和非侵入式的,并且提供非常精确的测量。在这些传感器中,光波是信息传感器和信息载体。 基于偏振的传感器马吕斯定律、应力光学、法拉第旋转等等,都是基于被测物的偏振变化,已经被用于测量许多量。 使用法拉第旋转来测量在导线中流动的电流,使用电感应双折射来测量电压,使用应力光学定律测量力,使用椭圆偏振仪测量薄膜厚度和折射率。拓展阅读:椭圆偏振的基本方程4. 基于方向变化的传感器光学方向是基于方向变化的设备,可用于监测许多变量,如位移、压力和温度。比如3D相机—结构光、双目视觉和光飞行时间。
本文向你介绍三方面内容:成像系统组成、3A系统概述、ISP概述 成像系统的组成 从成像过程来看,成像系统由如下部分组成: ? 焦距、物距、像距三者满足高斯成像公式 1/u + 1/v = 1/f 可以看出,焦距越长或传感器越小,视角就越窄 ? 受手机尺寸限制,手机中的相机,像距很短,所以焦距也非常短,通常在4mm左右 ? f值越小就能给图像传感器投射更多的光,提高成像质量,对夜景拍摄特别重要。 感光度 ISO 影响成像质量最核心的还是图像传感器(Sensor), Image Sensor是一种将光学信号(影像)转换成电子信号的设备,广泛应用在数码相机和其他电子光学设备中。 影响人的主观视觉感受及对目标的观测,所以进行降噪,但是降噪一般伴随着细节的损失; LSC: 镜头亮度矫正(lens shading corr)由于镜头光学系统原因(CRA),sensor中心光轴附件的pixle