前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >风格转换简介

风格转换简介

作者头像
用户1147754
修改2019-08-07 19:22:59
1.6K0
修改2019-08-07 19:22:59
举报
文章被收录于专栏:YoungGy

风格转换,是把一张图片转化成同内容但包含某风格的新图片。本文将介绍如何让机器学习风格转换,包含两种方法:优化问题求解、转化网络求解。

风格转换

风格转换,就是根据现有的风格照片SS,把当前照片CC转化成带有SS风格同时保留CC内容的照片TT。

本文将叙述两种风格转换的思路:

优化问题

综述

首先,陈述问题:假设已知风格照片SS、当前照片CC,求目标照片TT,要求带有SS的风格并且保留CC的内容。

下面,确定几个损失函数:

最后,便是求解优化问题:

损失函数

优化问题中

是通过预先训练的VGG网络得到。

首先,简单介绍下VGG网络:它是一种固定的网络结构,其结构如下所示,一般采用D或E结构,通常叫VGG-16和VGG-19:

那么,为什么

是通过预先训练的VGG网络得到呢?

训练后的VGG网络,每一层都对特征进行了抽象,越深得到的特征越具象。所以每一层的特征也就代表了图片不同粒度的抽象,可以根据特征的距离判断图片内容的相似程度。VGG的卷积层得到了feature map,假设其大小是C∗H∗W。

训练

构建好损失函数LL后,求解如下优化问题即可:

这里优化问题的求解方法采用L-BFGS(一种伪牛顿法),这样做的目的是得到比gradient descent更快的收敛速度。

例子

本人是詹姆斯的铁杆球迷,对詹姆斯的照片采用不同风格转换后的效果图如下所示。需要说明的是:第二列第一张是未加平滑损失

的效果图,可以看到存在很多噪点,第二列第二张是加入平滑损失

的效果图,照片清晰了很多。

代码

以下代码参考了Siraj Raval on YouTube

代码语言:javascript
复制
# Load library
from __future__ import print_function

import time
from PIL import Image
import numpy as np

from keras import backend
from keras.models import Model
from keras.applications.vgg16 import VGG16

from scipy.optimize import fmin_l_bfgs_b
from scipy.misc import imsave

# Load and preprocess the content and style images
height = 512
width = 512

content_image_path = 'images/hugo.jpg'
content_image = Image.open(content_image_path)
content_image = content_image.resize((height, width))
content_image

style_image_path = 'images/styles/wave.jpg'
style_image = Image.open(style_image_path)
style_image = style_image.resize((height, width))
style_image

content_array = np.asarray(content_image, dtype='float32')
content_array = np.expand_dims(content_array, axis=0)
print(content_array.shape)

style_array = np.asarray(style_image, dtype='float32')
style_array = np.expand_dims(style_array, axis=0)
print(style_array.shape)

content_array[:, :, :, 0] -= 103.939
content_array[:, :, :, 1] -= 116.779
content_array[:, :, :, 2] -= 123.68
content_array = content_array[:, :, :, ::-1]

style_array[:, :, :, 0] -= 103.939
style_array[:, :, :, 1] -= 116.779
style_array[:, :, :, 2] -= 123.68
style_array = style_array[:, :, :, ::-1]

content_image = backend.variable(content_array)
style_image = backend.variable(style_array)
combination_image = backend.placeholder((1, height, width, 3))

input_tensor = backend.concatenate([content_image,
                                    style_image,
                                    combination_image], axis=0)

# Reuse a model pre-trained for image classification to define loss functions
model = VGG16(input_tensor=input_tensor, weights='imagenet',
              include_top=False)
layers = dict([(layer.name, layer.output) for layer in model.layers])

content_weight = 0.025
style_weight = 5.0
total_variation_weight = 1.0

# Loss
loss = backend.variable(0.)
# The content loss
def content_loss(content, combination):
    return backend.sum(backend.square(combination - content))

layer_features = layers['block2_conv2']
content_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]

loss += content_weight * content_loss(content_image_features,
                                      combination_features)
# The style loss
def gram_matrix(x):
    features = backend.batch_flatten(backend.permute_dimensions(x, (2, 0, 1)))
    gram = backend.dot(features, backend.transpose(features))
    return gram
def style_loss(style, combination):
    S = gram_matrix(style)
    C = gram_matrix(combination)
    channels = 3
    size = height * width
    return backend.sum(backend.square(S - C)) / (4. * (channels ** 2) * (size ** 2))

feature_layers = ['block1_conv2', 'block2_conv2',
                  'block3_conv3', 'block4_conv3',
                  'block5_conv3']
for layer_name in feature_layers:
    layer_features = layers[layer_name]
    style_features = layer_features[1, :, :, :]
    combination_features = layer_features[2, :, :, :]
    sl = style_loss(style_features, combination_features)
    loss += (style_weight / len(feature_layers)) * sl
# The total variation loss
def total_variation_loss(x):
    a = backend.square(x[:, :height-1, :width-1, :] - x[:, 1:, :width-1, :])
    b = backend.square(x[:, :height-1, :width-1, :] - x[:, :height-1, 1:, :])
    return backend.sum(backend.pow(a + b, 1.25))

loss += total_variation_weight * total_variation_loss(combination_image)

# Define needed gradients and solve the optimisation problem
grads = backend.gradients(loss, combination_image)
outputs = [loss]
outputs += grads
f_outputs = backend.function([combination_image], outputs)

def eval_loss_and_grads(x):
    x = x.reshape((1, height, width, 3))
    outs = f_outputs([x])
    loss_value = outs[0]
    grad_values = outs[1].flatten().astype('float64')
    return loss_value, grad_values

class Evaluator(object):

    def __init__(self):
        self.loss_value = None
        self.grads_values = None

    def loss(self, x):
        assert self.loss_value is None
        loss_value, grad_values = eval_loss_and_grads(x)
        self.loss_value = loss_value
        self.grad_values = grad_values
        return self.loss_value

    def grads(self, x):
        assert self.loss_value is not None
        grad_values = np.copy(self.grad_values)
        self.loss_value = None
        self.grad_values = None
        return grad_values

evaluator = Evaluator()

# Train
x = np.random.uniform(0, 255, (1, height, width, 3)) - 128.

iterations = 10

for i in range(iterations):
    print('Start of iteration', i)
    start_time = time.time()
    x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(),
                                     fprime=evaluator.grads, maxfun=20)
    print('Current loss value:', min_val)
    end_time = time.time()
    print('Iteration %d completed in %ds' % (i, end_time - start_time))

# Evaluation
x = x.reshape((height, width, 3))
x = x[:, :, ::-1]
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = np.clip(x, 0, 255).astype('uint8')

Image.fromarray(x)

网络转换

结构

将风格转换当成优化问题求解存在如下问题:

  • 每来一张新图片,都需要重新求解优化问题。如果需要将大量图片转换成同一风格的话效率会很低

考虑能否构建一个transformer,将图片CC转化成目标图片TT。训练的时候只需要学习transformer的参数。训练完成得到transformer后,当新的图片来到时,直接输入transformer即可得到新的图片,大大提高了效率。

本节中的风格转换即采用上述构建transformer的方法,利用预训练的VGG得到特征进而得到损失函数,通过调节transformer的参数最小化损失函数。图示如下:

训练

损失函数的定义与优化问题部分相同,这里求解的优化问题是:

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017年05月26日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 风格转换
  • 优化问题
    • 综述
      • 损失函数
        • 训练
          • 例子
            • 代码
            • 网络转换
              • 结构
                • 训练
                相关产品与服务
                腾讯云 TI 平台
                腾讯云 TI 平台(TencentCloud TI Platform)是基于腾讯先进 AI 能力和多年技术经验,面向开发者、政企提供的全栈式人工智能开发服务平台,致力于打通包含从数据获取、数据处理、算法构建、模型训练、模型评估、模型部署、到 AI 应用开发的产业 + AI 落地全流程链路,帮助用户快速创建和部署 AI 应用,管理全周期 AI 解决方案,从而助力政企单位加速数字化转型并促进 AI 行业生态共建。腾讯云 TI 平台系列产品支持公有云访问、私有化部署以及专属云部署。
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档