详细描述,好像跟我自己写的差不多......不过终究是大神级别,讲的就是透彻
1. 概述
AVL树是最早提出的自平衡二叉树,在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树。AVL树得名于它的发明者G.M. Adelson-Velsky和E.M. Landis。AVL树种查找、插入和删除在平均和最坏情况下都是O(log n),增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。
2. 基本术语
有四种种情况可能导致二叉查找树不平衡,分别为:
(1)LL:插入一个新节点到根节点的左子树(Left)的左子树(Left),导致根节点的平衡因子由1变为2
(2)RR:插入一个新节点到根节点的右子树(Right)的右子树(Right),导致根节点的平衡因子由-1变为-2
(3)LR:插入一个新节点到根节点的左子树(Left)的右子树(Right),导致根节点的平衡因子由1变为2
(4)RL:插入一个新节点到根节点的右子树(Right)的左子树(Left),导致根节点的平衡因子由-1变为-2
针对四种种情况可能导致的不平衡,可以通过旋转使之变平衡。有两种基本的旋转:
(1)左旋转:将根节点旋转到(根节点的)右孩子的左孩子位置
(2)右旋转:将根节点旋转到(根节点的)左孩子的右孩子位置
3. AVL树的旋转操作
AVL树的基本操作是旋转,有四种旋转方式,分别为:左旋转,右旋转,左右旋转(先左后右),右左旋转(先右后左),实际上,这四种旋转操作两两对称,因而也可以说成两类旋转操作。
基本的数据结构:
1 typedef struct Node* Tree;
2 typedef struct Node* Node_t;
3 typedef Type int;
4
5 struct Node{
6 Node_t left;
7 Node_t right;
8 int height;
9 Type data;
10 };
11 int Height(Node_t node) {
12 return node->height;
13 }
3.1 LL
LL情况需要右旋解决,如下图所示:
1 Node_t RightRotate(Node_t a) {
2 b = a->left;
3 a->left = b->right;
4 b->right = a;
5 a->height = Max(Height(a->left), Height(a->right));
6 b->height = Max(Height(b->left), Height(b->right));
7 return b;
8 }
3.2 RR
RR情况需要左旋解决,如下图所示:
1 Node_t LeftRotate(Node_t a) {
2 b = a->right;
3 a->right = b->left;
4 b->left = a;
5 a->height = Max(Height(a->left), Height(a->right));
6 b->height = Max(Height(b->left), Height(b->right));
7 return b;
8 }
3.3 LR
LR情况需要左右(先B左旋转,后A右旋转)旋解决,如下图所示:
1 Node_t LeftRightRotate(Node_t a) {
2 a->left = LeftRotate(a->left);
3 return RightRotate(a);
4 }
3.4 RL
RL情况需要右左旋解决(先B右旋转,后A左旋转),如下图所示:
1 Node_t RightLeftRotate(Node_t a) {
2 a->right = RightRotate(a->right);
3 return LeftRotate(a);
4 }
4. AVL数的插入和删除操作
(1) 插入操作:实际上就是在不同情况下采用不同的旋转方式调整整棵树,具体代码如下:
1 Node_t Insert(Type x, Tree t) {
2 if(t == NULL) {
3 t = NewNode(x);
4 } else if(x < t->data) {
5 t->left = Insert(t->left);
6 if(Height(t->left) - Height(t->right) == 2) {
7 if(x < t->left->data) {
8 t = RightRotate(t);
9 } else {
10 t = LeftRightRotate(t);
11 }
12 }
13 } else {
14 t->right = Insert(t->right);
15 if(Height(t->right) - Height(t->left) == 2) {
16 if(x > t->right->data) {
17 t = LeftRotate(t);
18 } else {
19 t = RightLeftRotate(t);
20 }
21 }
22 }
23 t->height = Max(Height(t->left), Height(t->right)) + 1;
24 return t;
25 }
(2) 删除操作:首先定位要删除的节点,然后用该节点的右孩子的最左孩子替换该节点,并重新调整以该节点为根的子树为AVL树,具体调整方法跟插入数据类似,代码如下:
1 Node_t Delete(Type x, Tree t) {
2 if(t == NULL) return NULL;
3 if(t->data == x) {
4 if(t->right == NULL) {
5 Node_t temp = t;
6 t = t->left;
7 free(temp);
8 } else {
9 Node_t head = t->right;
10 while(head->left) {
11 head = head->left;
12 }
13 t->data = head->data; //just copy data
14 t->right = Delete(t->data, t->right);
15 t->height = Max(Height(t->left), Height(t->right)) + 1;
16 }
17 return t;
18 } else if(t->data < x) {
19 Delete(x, t->right);
20 if(t->right) Rotate(x, t->right);
21 } else {
22 Delete(x, t->left);
23 if(t->left) Rotate(x, t->left);
24 }
25 if(t) Rotate(x, t);
26 }
5. 总结
AVL树是最早的自平衡二叉树,相比于后来出现的平衡二叉树(红黑树,treap,splay树)而言,它现在应用较少,但研究AVL树对于了解后面出现的常用平衡二叉树具有重要意义。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有