前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >模型加速

模型加速

作者头像
用户1148525
发布于 2019-05-26 03:48:02
发布于 2019-05-26 03:48:02
9080
举报

CLIP-Q: Deep Network Compression Learning by In-Parallel Pruning-Quantization CVPR2018 http://www.sfu.ca/~ftung/ 裁剪和量化一体化框架

本文的思路比较简单,裁剪+量化一体训练模型分三个步骤: 1) Clipping 裁剪,将网络中的权重系数值接近0 的权重全部置零,当然这种置零是临时性的,后面的训练迭代根据实际情况调整。 这里的阈值自适应确定,(model the objective function as a Gaussian process) 2)Partitioning 切分, partition the non-clipped portion of the 1-D axis of weight values into quantization intervals,这里我们使用了 linear (uniform) partitioning ,也可以使用其他自适应切分 如 weighted entropy 3)Quantizing 量化 update the quantization levels the discrete values that the weights are permitted to take in the compressed network

Experiments

11

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018年11月05日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档