You are given an n x n 2D matrix
representing an image, rotate the image by 90 degrees (clockwise).
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.
Example 1:
Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
Output: [[7,4,1],[8,5,2],[9,6,3]]
Example 2:
Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
Example 3:
Input: matrix = [[1]]
Output: [[1]]
Example 4:
Input: matrix = [[1,2],[3,4]]
Output: [[3,1],[4,2]]
Constraints:
matrix.length == n
matrix[i].length == n
1 <= n <= 20
-1000 <= matrix[i][j] <= 1000
给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
给定一个方阵,将方阵顺时针旋转90度;而且要求必须原地选择,直接对矩阵内容进行修改,不能使用别的矩阵进行辅助。
通过观察,可以发现,顺时针矩阵旋转可以通过两步完成:
完整代码:
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
if (matrix.size() <= 0) return;
updown(matrix);
diagonal(matrix);
return;
}
void updown(vector<vector<int>>& matrix){
int size = matrix.size(), t = matrix.size() / 2;
for (int i=0; i< t; ++i){
for (int j=0; j< size; ++j){
swap(matrix[i][j], matrix[size-1-i][j]);
}
}
}
void diagonal(vector<vector<int>>& matrix){
int size = matrix.size();
for (int i=0; i< size; ++i){
for (int j=i; j< size; ++j){
swap(matrix[i][j], matrix[j][i]);
}
}
}
};