CEP 即Complex Event Processing - 复杂事件,Flink CEP 是在 Flink 中实现的复杂时间处理(CEP)库。处理事件的规则,被叫做“模式”(Pattern),Flink CEP 提供了 Pattern API,用于对输入流数据进行复杂事件规则定义,用来提取符合规则的事件序列。
Pattern API 大致分为三种:个体模式,组合模式,模式组。
CEP 在互联网各个行业都有应用,例如金融、物流、电商、智能交通、物联网行业等行业:
接下来我们讲对 超时未支付、连续登录、交易活跃用户 这三个场景进行实操。
需求:找出那些下单后 10 分钟内没有支付的订单。创建 TimeOutPayCEPMain.java 类并编写整体代码:
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
DataStream<PayEvent> source = env.fromElements(
new PayEvent(1L, "create", 1597905234000L),
new PayEvent(1L, "pay", 1597905235000L),
new PayEvent(2L, "create", 1597905236000L),
new PayEvent(2L, "pay", 1597905237000L),
new PayEvent(3L, "create", 1597905239000L)
).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<PayEvent>(Time.milliseconds(500L)) {
@Override
public long extractTimestamp(PayEvent payEvent) {
return payEvent.getTimestamp();
}
}).keyBy(new KeySelector<PayEvent, Object>() {
@Override
public Object getKey(PayEvent value) throws Exception {
return value.getUserId();
}
});
// 逻辑处理代码
env.execute("execute cep");
}
逻辑处理代码如下:
OutputTag<PayEvent> orderTimeoutOutput = new OutputTag<PayEvent>("orderTimeout") {};
Pattern<PayEvent, PayEvent> pattern = Pattern.<PayEvent>
begin("begin")
.where(new IterativeCondition<PayEvent>() {
@Override
public boolean filter(PayEvent payEvent, Context context) throws Exception {
return payEvent.getActive().equals("create");
}
})
.followedBy("pay")
.where(new IterativeCondition<PayEvent>() {
@Override
public boolean filter(PayEvent payEvent, Context context) throws Exception {
return payEvent.getActive().equals("pay");
}
})
.within(Time.seconds(600));
PatternStream<PayEvent> patternStream = CEP.pattern(source, pattern);
SingleOutputStreamOperator<PayEvent> result = patternStream.select(orderTimeoutOutput, new PatternTimeoutFunction<PayEvent, PayEvent>() {
@Override
public PayEvent timeout(Map<String, List<PayEvent>> map, long l) throws Exception {
return map.get("begin").get(0);
}
}, new PatternSelectFunction<PayEvent, PayEvent>() {
@Override
public PayEvent select(Map<String, List<PayEvent>> map) throws Exception {
return map.get("pay").get(0);
}
});
//result.print();
DataStream<PayEvent> sideOutput = result.getSideOutput(orderTimeoutOutput);
sideOutput.print();
运行结果:
需求:找出那些 5 秒钟内连续登录失败的账号,然后禁止用户再次尝试登录需要等待 1 分钟。创建 LoginCEPMain.java 类并实现前提代码:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
DataStream<LogInEvent> source = env.fromElements(
new LogInEvent(1L, "fail", 1597905234000L),
new LogInEvent(1L, "success", 1597905235000L),
new LogInEvent(2L, "fail", 1597905236000L),
new LogInEvent(2L, "fail", 1597905237000L),
new LogInEvent(2L, "fail", 1597905238000L),
new LogInEvent(3L, "fail", 1597905239000L),
new LogInEvent(3L, "success", 1597905240000L)
).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<LogInEvent>(Time.milliseconds(500L)) {
@Override
public long extractTimestamp(LogInEvent logInEvent) {
return logInEvent.getTimestamp();
}
}).keyBy(new KeySelector<LogInEvent, Object>() {
@Override
public Object getKey(LogInEvent value) throws Exception {
return value.getuId();
}
});
// 关键逻辑代码
env.execute("execute cep");
关键逻辑代码如下:
Pattern pattern = Pattern.<LogInEvent>begin("start").where(new IterativeCondition<LogInEvent>() {
@Override
public boolean filter(LogInEvent logInEvent, Context<LogInEvent> context) throws Exception {
return logInEvent.getAction().equals("fail");
}
}).next("next").where(new IterativeCondition<LogInEvent>() {
@Override
public boolean filter(LogInEvent logInEvent, Context<LogInEvent> context) throws Exception {
return logInEvent.getAction().equals("fail");
}
}).within(Time.seconds(5));
PatternStream<LogInEvent> patternStream = CEP.pattern(source, pattern);
SingleOutputStreamOperator<AlertEvent> process = patternStream.process(new PatternProcessFunction<LogInEvent, AlertEvent>() {
@Override
public void processMatch(Map<String, List<LogInEvent>> match, Context ctx, Collector<AlertEvent> out) throws Exception {
List<LogInEvent> start = match.get("start");
List<LogInEvent> next = match.get("next");
System.out.println("start:" + start + ",next:" + next);
out.collect(new AlertEvent(String.valueOf(start.get(0).getuId()), "Login fail ~ "));
}
});
process.print();
运行结果:
需求:找出那些 24 小时内至少 5 次有效交易的账户。创建 ActiveCEPMain.java 类并实现前提代码:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
DataStream<TransactionEvent> source = env.fromElements(
new TransactionEvent("100XX", 0.0D, 1597905234000L),
new TransactionEvent("100XX", 100.0D, 1597905235000L),
new TransactionEvent("100XX", 200.0D, 1597905236000L),
new TransactionEvent("100XX", 300.0D, 1597905237000L),
new TransactionEvent("100XX", 400.0D, 1597905238000L),
new TransactionEvent("100XX", 500.0D, 1597905239000L),
new TransactionEvent("101XX", 0.0D, 1597905240000L),
new TransactionEvent("101XX", 100.0D, 1597905241000L)
).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<TransactionEvent>(Time.milliseconds(500L)) {
@Override
public long extractTimestamp(TransactionEvent transactionEvent) {
return transactionEvent.getTimestamp();
}
}).keyBy(new KeySelector<TransactionEvent, Object>() {
@Override
public Object getKey(TransactionEvent value) throws Exception {
return value.getAccountId();
}
});
// 关键逻辑处理代码
env.execute("execute cep");
关键逻辑处理代码 :
Pattern pattern = Pattern.<TransactionEvent>begin("start").where(
new SimpleCondition<TransactionEvent>() {
@Override
public boolean filter(TransactionEvent transactionEvent) {
return transactionEvent.getAmount() > 0;
}
}
).timesOrMore(5)
.within(Time.hours(24));
PatternStream<TransactionEvent> patternStream = CEP.pattern(source, pattern);
SingleOutputStreamOperator<AlertEvent> process = patternStream.process(new PatternProcessFunction<TransactionEvent, AlertEvent>() {
@Override
public void processMatch(Map<String, List<TransactionEvent>> map, Context context, Collector<AlertEvent> collector) throws Exception {
List<TransactionEvent> start = map.get("start");
List<TransactionEvent> next = map.get("next");
System.out.println("start:" + start + ",next:" + next);
collector.collect(new AlertEvent(start.get(0).getAccountId(), "lian xu 有效交易!"));
}
});
process.print();
运行结果:
到此,我们的三种场景的案例已经操作完毕,从中可以看出 CEP 技术开发流程以及模式的定义之后其实就不算难,这些玩意主要还是靠理解,多练习才能熟练应用的;好了,本次总结就到这里,希望能帮助到你哦同学。
责编 大数据真好玩
插画 大数据真好玩
封面图来源 大数据真好玩
文章参考:https://www.jianshu.com/p/47675657fb0d