前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >『深度思考』为什么卷积神经网络具有平移不变性

『深度思考』为什么卷积神经网络具有平移不变性

作者头像
小宋是呢
发布2022-03-07 14:02:06
7610
发布2022-03-07 14:02:06
举报
文章被收录于专栏:深度应用

为什么卷积神经网络具有平移不变性

简单地说,卷积+最大池化约等于平移不变性。 卷积:简单地说,图像经过平移,相应的特征图上的表达也是平移的。 下图只是一个为了说明这个问题的例子。输入图像的左下角有一个人脸,经过卷积,人脸的特征(眼睛,鼻子)也位于特征图的左下角。

假如人脸特征在图像的左上角,那么卷积后对应的特征也在特征图的左上角。

在神经网络中,卷积被定义为不同位置的特征检测器,也就意味着,无论目标出现在图像中的哪个位置,它都会检测到同样的这些特征,输出同样的响应。比如人脸被移动到了图像左下角,卷积核直到移动到左下角的位置才会检测到它的特征。 池化:比如最大池化,它返回感受野中的最大值,如果最大值被移动了,但是仍然在这个感受野中,那么池化层也仍然会输出相同的最大值。这就有点平移不变的意思了。

所以这两种操作共同提供了一些平移不变性,即使图像被平移,卷积保证仍然能检测到它的特征,池化则尽可能地保持一致的表达。

总结

卷积的平移不变性就是通过卷积+池化以后不管某一特征移动了位置,总可以检测出来输入到下一层中,又由于全连接是加权求和计算,被CNN激活的特征又可以传导到下一层中。

参考

1.https://www.cnblogs.com/Terrypython/p/11147490.html

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 为什么卷积神经网络具有平移不变性
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档