前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度学习刷SOTA有哪些trick?

深度学习刷SOTA有哪些trick?

作者头像
zenRRan
发布2022-06-29 17:02:19
6440
发布2022-06-29 17:02:19
举报
文章被收录于专栏:深度学习自然语言处理

每天给你送来NLP技术干货!


作者:Gordon Lee (转载请联系作者) 链接:https://www.zhihu.com/people/gordon-lee

1. R-Drop:两次前向+KL loss约束

2. Post Training: 在领域语料上用mlm进一步预训练

3. EFL: 少样本下,把分类问题转为匹配问题,把输入构造为NSP任务形式.

4. 混合精度fp16: 加快训练速度,提高训练精度

5. 多卡ddp训练的时候,用到梯度累积时,可以使用no_sync减少不必要的梯度同步,加快速度

6. 对于验证集或者测试集特别大的情况,可以尝试多卡inference,需要用的就是dist.all_gather,对于非张量的话也可以用all_gather_object

7. PET: 少样本下,把分类转为mask位置预测,并构造verbalizer,参考EACL2021. PET

8. ArcFaceLoss:双塔句子匹配的loss把NT-Xent loss改成arccos的形式,参考ACL2022. ArcCSE

9. 数据增强在zero shot x-lingual transfer:code switch,machine translation..记得最后加一致性loss,参考consistency regularization for cross lingual finetuning

10. SimCSE:继续在领域语料上做simcse的预训练

11. Focal loss: 不平衡的处理

12. 双塔迟交互:maxsim操作:query和doc的每个token表征算相似度,取最大相似度再求和。速度和精度都有一个很好的平衡,参考colbert

13. 持续学习减轻遗忘:EWC方法+一个很强的预训练模型效果很不错。就是加一个正则让重要参数遗忘不太多,重要性用fisher信息度量。

14. 对抗训练:FGM,PGD,能提点,就是训练慢,

15. memory bank增大bsz,虽然我感觉有时候有点鸡肋


📝论文解读投稿,让你的文章被更多不同背景、不同方向的人看到,不被石沉大海,或许还能增加不少引用的呦~ 投稿加下面微信备注“投稿”即可。

最近文章

EMNLP 2022 和 COLING 2022,投哪个会议比较好?

一种全新易用的基于Word-Word关系的NER统一模型

阿里+北大 | 在梯度上做简单mask竟有如此的神奇效果

ACL'22 | 快手+中科院提出一种数据增强方法:Text Smoothing


代码语言:javascript
复制
下载一:中文版!学习TensorFlow、PyTorch、机器学习、深度学习和数据结构五件套!  后台回复【五件套】
下载二:南大模式识别PPT  后台回复【南大模式识别】

投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。

记得备注呦

代码语言:javascript
复制
整理不易,还望给个在看!
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-06-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 深度学习自然语言处理 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档