题目224
设函数
f(x) 一阶连续可导,且
f(0)=0,
f'(0)\ne0 ,求
\lim\limits_{x\to0}\dfrac{\displaystyle\int_0^{x^2}f(t)dt}{x^2\displaystyle\int_0^xf(t)dt}解答
连续可导:函数可导,且导函数连续
f(x) 一阶连续可导
\quad\Rightarrow\quad\lim\limits_{x \to 0} f'(x_0 + x) = f'(x_0)[
\begin{aligned}
\lim\limits_{x\to0}\dfrac{\displaystyle\int_0^{x^2}f(t)dt}{x^2\displaystyle\int_0^xf(t)dt}
&\xlongequal{L'}
\lim\limits_{x\to0}\dfrac{2x f(x^2)}{2x\displaystyle\int_0^xf(t)dt + x^2f(x)}
\\\\
&=
\lim\limits_{x\to0}\dfrac{2f(x^2)}{2\displaystyle\int_0^xf(t)dt + xf(x)}
\\\\
&\xlongequal{L'}
\lim\limits_{x\to0}\dfrac{4xf'(x^2)}{3f(x) + xf'(x)}
\\\\
&=
\lim\limits_{x\to0}\dfrac{4f'(x^2)}{3 \cdot \dfrac{f(x)}{x} + f'(x)}
\\\\
&=
\frac{4f'(0)}{3 \cdot \lim\limits_{x\to0} \dfrac{f(x)}{x} + f'(0)}
\\\\
&=
\frac{4f'(0)}{3f'(0) + f'(0)}
\\\\
&=
1
\\\\
\end{aligned}
]题目225
[
\lim_{x\to0^+}\frac
{\displaystyle\int_0^x\int_u^xu^2\arctan(1+tu)dtdu}
{\displaystyle(\int_0^x\ln(1+t)dt)^2}
]解答
本题核心思路还是 洛必达法则 去 积分符号
分子是一个 积分变量 分别为
t 和
u 的 二重积分,且两个 积分上限 都是
x 不好直接 洛必达
先考虑一下 交换积分次序 的手段,能否解决这个问题(答案是显然的,因为积分域是一个三角形)
先画出 积分域,是一个边长为
x 的 正方形 副对角线 上方的 三角形区域
然后利用该 积分域,交换积分次序
[
\displaystyle\int_0^x\int_u^xu^2\arctan(1+tu)dtdu =
\displaystyle \int_0^x\int_0^t u^2\arctan(1+tu)dudt
]通过 交换积分次序 的手段,我们成功在 积分限 上只保留了一个
x,接下来就可以 洛必达 了
然后观察一下分母,可以利用 变上限积分,对 被积函数 做 等价无穷小代换,如下:
[
\ln(1+x)\sim x
\quad\Rightarrow\quad
\int_0^x\ln(1+t)dt\sim\int_0^xtdt
]预处理都完成了,剩下的洛就完事了:
[
\begin{aligned}
&\lim_{x\to0^+}\frac
{\displaystyle \int_0^x\int_0^t u^2\arctan(1+tu)dudt}
{\displaystyle(\int_0^x t dt)^2}
\\\\
\xlongequal{L'}&
\lim_{x\to0^+}\frac
{\displaystyle \int_0^x u^2\arctan(1+xu)du}
{2x\displaystyle\int_0^xtdt}
\\\\
\xlongequal{\scriptscriptstyle\text{广义积分中值定理}}&
\lim_{x\to0^+}\frac
{\displaystyle \arctan(1+x\xi) \cdot \int_0^x u^2du}
{2x\displaystyle\int_0^xtdt}
\quad \text{其中} \xi\in(0,x)
\\\\
=&
\frac{\pi}{8} \cdot
\lim_{x\to0^+}\frac
{\displaystyle \int_0^x u^2du}
{x\displaystyle\int_0^x tdt}
\\\\
\xlongequal{L'}&
\frac{\pi}{8} \cdot
\lim_{x\to0^+}\frac
{x^2}
{\displaystyle\int_0^x tdt + x^2}
\\\\
\xlongequal{L'}&
\frac{\pi}{8} \cdot
\lim_{x\to0^+}\frac
{2x}
{3x}
\\\\
=& \frac{\pi}{12}
\end{aligned}
]题目226
[
\lim_{x\to+\infty}\frac{\displaystyle\int_0^xt|\sin t|dt}{x^2}
]解答(一般方法)
本题直接 洛必达 的话,洛必达法则会失效
洛必达法则成立的三大条件:
\dfrac{0}{0},\dfrac{\infty}{\infty}, \dfrac{\cdot}{\infty} 型
- 函数
f(x) 和
g(x) 在
x_0 的 去心邻域内 可导
- 求导后
\lim\limits_{x\to x_0}\dfrac{f'(x)}{g'(x)} = A 存在 (
A可为 实数,也可为
\infty)
本题直接求导的话,原式 =
\lim\limits_{x\to+\infty}\dfrac{|\sin x|dt}{2} 极限不存在,故 洛必达失效
考虑一下如何求解该题,对于 绝对值函数 来说,首要目标就是去 绝对值
|\sin x| 的 周期 是
\pi,故我们可以考虑能不能用 不等式 进行 放缩,然后 夹逼
对于任意
k\pi \lt x \lt k\pi + \pi,有:
[
\begin{aligned}
\int_0^{k\pi}t|\sin t|dt &\lt \int_0^xt|\sin t|dt &\lt \int_0^{k\pi + \pi}t|\sin t|dt
\end{aligned}
]考虑如何求积分
\displaystyle \int_0^{k\pi}t|\sin t|dt[
\begin{aligned}
I_1 &= \int_0^{\pi} t|\sin t| dt = \pi \\\\
I_2 &= \int_\pi^{2\pi} t|\sin t| dt = 3\pi \\\\
\cdots \\\\
I_n &= \int_{(n-1)\pi}^{n\pi} t|\sin t| dt = (2n - 1)\pi \\\\
\end{aligned}
]故
\displaystyle \int_0^{k\pi}t|\sin t|dt = k^2\pi 这里分享另一个做法(区间再现+积分再现),由 @好孩子都会写代码 同学提供
[
\begin{aligned}
\int_0^{k\pi}t|\sin t|dt
&=
\int_0^{k\pi}(k\pi - t)|\sin (k\pi - t)|dt
\\\\
&=
k\pi\int_0^{k\pi}|\sin t|dt - \int_0^{k\pi} t|\sin t|dt
\\\\
I &=
k\pi\int_0^{k\pi}|\sin t|dt - I
\\\\
I &=
\frac{k\pi}{2}\int_0^{k\pi}|\sin t|dt
\\\\
\end{aligned}
] 而积分
\displaystyle\int_0^{k\pi} |\sin t|dt = 2k 是显然的(一拱的面积为
2,
k 拱的面积为
2k) 则
I = k^2\pi,这个做法必上述递推要简单
接着我们的任务就是 凑出题设的极限,然后 夹逼
[
\lim_{x\to+\infty}\frac{k^2\pi}{x^2} \lt \lim_{x\to+\infty}\frac{\displaystyle\int_0^xt|\sin t|dt}{x^2} \lt \lim_{x\to+\infty}\frac{(k+1)^2\pi}{x^2}
]由 kx k+ x - kx {x+} {x+} _{x+}
故
\lim\limits_{x\to+\infty}\dfrac{k^2\pi}{x^2} = \dfrac{1}{\pi},代入不等式中夹逼可得:
\lim\limits_{x\to+\infty}\dfrac{\displaystyle\int_0^xt|\sin t|dt}{x^2} = \dfrac{1}{\pi}
解答(O'Stolz定理)
知道 O'Stolz定理(洛必达推广的离散型) 这题就变成 构造题 了
令
x_n = \displaystyle\int_0^{n\pi} t|\sin t|dt,
y_n = x^2,由于
\\{y_n\\} 单调递增,且
\lim\limits_{n\to\infty} y_n = +\infty,由 O'Stolz 定理:
[
\lim_{n\to+\infty} \frac{x_n}{y_n} =
\lim_{n\to+\infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n} =
\lim_{n\to+\infty} \frac{\dfrac{(2n+2)(n+1)\pi}{2} - \dfrac{n\cdot 2n\pi}{2}}{(n\pi + \pi)^2 - (n\pi)^2} =
\dfrac{1}{\pi}
]再由 海涅定理 可知:
[
\lim_{n\to+\infty} \frac{\displaystyle\int_0^xt|\sin t|dt}{x^2} =
\lim_{n\to+\infty} \frac{x_n}{y_n} = \dfrac{1}{\pi}
]题目227
[
\text{求极限 }\lim_{x\to+\infty}\sin\frac{1}{x}\cdot\int_x^{x^2}
(1+\frac{1}{2t})^t\sin\frac{1}{\sqrt{t}}dt
]解答
[
\begin{aligned}
&
\lim_{x\to+\infty}\sin\frac{1}{x}\cdot\int_x^{x^2}
(1+\frac{1}{2t})^t\sin\frac{1}{\sqrt{t}}dt
\\\\
=&
\lim_{x\to+\infty}[\frac{\displaystyle\int_x^{x^2}
(1+\frac{1}{2t})^t\sin\frac{1}{\sqrt{t}}dt}{x}]
\\\\
\xlongequal{L'}&
\lim_{x\to+\infty}[2x(1+\frac{1}{2x^2})^{x^2}\cdot \sin\frac{1}{x} -
(1+\frac{1}{2x})^{x}\cdot \sin\frac{1}{\sqrt{x}}]
\\\\
=&
\lim_{x\to+\infty}[2 \cdot e^{x^2\ln(1+\frac{1}{2x^2})} -
e^{x\ln(1+\frac{1}{2x})}\cdot \frac{1}{\sqrt{x}}]
\\\\
=&
2\lim_{x\to+\infty}e^{x^2\ln(1+\frac{1}{2x^2})} - \lim_{x\to+\infty}
e^{x\ln(1+\frac{1}{2x})}\cdot \frac{1}{\sqrt{x}}
\\\\
=&
2e^{\frac{1}{2}} - 0
\\\\
=&
2e^{\frac{1}{2}}
\\\\
\end{aligned}
]题目228
[
\text{求极限 }\lim_{x\to+\infty}x(1-\frac{\ln x}{x})^x
]解答一(暴力解)
"
\infty \cdot 0" 型,考虑倒代还化为 "
\dfrac{0}{0}" 型
令
x = \dfrac{1}{t},则:
[
\begin{aligned}
\lim_{x\to+\infty} x(1-\frac{\ln x}{x})^x
&=
\lim_{t\to0^+} \frac{(1+t\ln t)^{\dfrac{1}{t}}}{t}
\\\\
&=
\lim_{t\to0^+} \frac{e^{\dfrac{\ln(1 + t\ln t)}{t}}}{t}
\\\\
&=
\lim_{t\to0^+} \frac{e^{\dfrac{t\ln t - \frac{1}{2}t^2\ln^2 t + o(t^2\ln^2t)}{t}}}{t}
\\\\
&=
\lim_{t\to0^+} \frac{e^{\ln t}}{t}
\\\\
&=
\lim_{t\to0^+} \frac{t}{t}
\\\\
&= 1
\end{aligned}
]解答二(取对数)
考虑乘积幂次都有的式子,不妨取对数,转化为加减法(求导里常用)
令
y = x(1-\dfrac{\ln x}{x})^x[
\begin{aligned}
\lim_{x\to+\infty} \ln y
&=
\lim_{x\to+\infty} [\ln x + x\ln(1 - \dfrac{\ln x}{x})]
\\\\
&=
\lim_{x\to+\infty} x[\ln(1 - \dfrac{\ln x}{x}) - (-\dfrac{\ln x}{x})]
\\\\
&=
\lim_{x\to+\infty} x[-\dfrac{1}{2}(-\dfrac{\ln x}{x})^2]
\\\\
&=
-\frac{1}{2} \lim_{x\to+\infty} \dfrac{\ln^2 x}{x}
\\\\
&= 0
\end{aligned}
]\lim\limits_{x\to+\infty} \ln y = 0 \quad\Rightarrow\quad \lim\limits_{x\to+\infty} y = 1题目229
[
\text{求极限 }\lim_{x\to0}\Bigg(\frac{1 + \displaystyle\int_0^xe^{t^2}dt}{e^x-1} - \frac{1}{\sin x}\Bigg)
]解答
[
\begin{aligned}
\lim_{x\to0}\Bigg(\frac{1 + \displaystyle\int_0^xe^{t^2}dt}{e^x-1} - \frac{1}{\sin x}\Bigg)
&=
\lim_{x\to0}\Bigg(\frac{\displaystyle\int_0^xe^{t^2}dt}{e^x-1} - \frac{\sin x - e^x + 1}{(e^x-1)\sin x}\Bigg)
\\\\
&=
\lim_{x\to0} \frac{\displaystyle\int_0^xe^{t^2}dt}{e^x-1} - \lim_{x\to0}\frac{\sin x - e^x + 1}{(e^x-1)\sin x}
\\\\
&=
\lim_{x\to0} \frac{\displaystyle\int_0^xe^{t^2}dt}{x} - \lim_{x\to0}\frac{x - x - \dfrac{1}{2}x^2}{x^2}
\\\\
&=
1 - \dfrac{1}{2}
\\\\
&= \frac{1}{2}
\end{aligned}
]题目230
[
\lim_{x\to0}\Big[\frac{1}{\ln(x+\sqrt{1+x^2})} - \frac{1}{\ln(1+x) + \int_0^xt(1+t)^{\frac{1}{t}}dt}\Big]
]解答
[
\lim_{x\to0}\frac{\ln(x+\sqrt{1+x^2})}{x} = 1
\quad\Rightarrow\quad
\ln(x+\sqrt{1+x^2}) \sim x
][
\lim_{x\to0}\frac{\int_0^xt(1+t)^{\frac{1}{t}}dt}{x} = 0
\quad\Rightarrow\quad
\Big[ \ln(1+x) + \int_0^xt(1+t)^{\frac{1}{t}}dt\Big] \sim \ln(1+x) \sim x
][
\begin{aligned}
&
\lim_{x\to0}\Big[\frac{1}{\ln(x+\sqrt{1+x^2})} - \frac{1}{\ln(1+x) + \displaystyle\int_0^xt(1+t)^{\frac{1}{t}}dt}\Big]
\\\\
=&
\lim_{x\to0}\frac
{\ln(1 + x) + \displaystyle\int_0^xt(1 + t)^{\frac{1}{t}}dt - \ln(x+\sqrt{1+x^2})}
{x^2}
\\\\
=&
\lim_{x\to0}\Bigg[\frac{\ln(1+x) - \ln(x+\sqrt{1+x^2})}{x^2}\Bigg] +
\lim_{x\to0}\Bigg[\frac{\int_0^xt(1+t)^{\frac{1}{t}}dt}{x^2}\Bigg] \quad(极限的四则运算)
\\\\
=&
\lim_{x\to0}\Bigg[\frac{\dfrac{1}{\xi}(1 - \sqrt{1+x^2})}{x^2}\Bigg] +
\lim_{x\to0}\Bigg[\frac{x(1+x)^{\frac{1}{x}}}{2x}\Bigg] \quad\bigg(Lagrange中值定理\bigg)
\\\\
=&
\lim_{x\to0}\Bigg(\frac{1 \cdot (-1)}{2\sqrt{1+x^2}}\Bigg) +
\lim_{x\to0}\Bigg(\frac{e}{2}\Bigg) \quad(洛必达)
\\\\
=&
\frac{e - 1}{2}
\end{aligned}
]题目231
[
\lim_{x\to+\infty} \bigg[{
(x^3 - x^2 + \dfrac{x}{2} + 1) e^{\frac{1}{x}} -
\sqrt{x^6 + x^2 + x + 1}
}\bigg]
]解答
不是很喜欢这种 硬展 的题目
[
\begin{aligned}
&\lim_{x\to+\infty} \bigg[{
(x^3 - x^2 + \dfrac{x}{2} + 1) e^{\frac{1}{x}} - x^3 + x^3 -
\sqrt{x^6 + x^2 + x + 1}
}\bigg]
\\\\
=&
\lim_{x\to+\infty} x^3 [(1-\dfrac{1}{x} + \dfrac{1}{2x^2} + \dfrac{1}{x^3})e^{\frac{1}{x}} - \sqrt{1 + \dfrac{1}{x^4} + \dfrac{1}{x^5} + \dfrac{1}{x^6}}]
\\\\
=&
\lim_{x\to+\infty} x^3 \cdot e^{\frac{1}{x}} [(1-\dfrac{1}{x} + \dfrac{1}{2x^2} + \dfrac{1}{x^3}) - e^{-\frac{1}{x}}\sqrt{1 + \dfrac{1}{x^4} + \dfrac{1}{x^5} + \dfrac{1}{x^6}}]
\\\\
=&
\lim_{x\to+\infty} x^3 \cdot [(1-\dfrac{1}{x} + \dfrac{1}{2x^2} + \dfrac{1}{x^3}) -
(1 - \dfrac{1}{x} + \dfrac{1}{2x^2} - \dfrac{1}{6x^3}) (1 + o(\dfrac{1}{x^3}))]
\\\\
=&
\lim_{x\to+\infty} x^3 \cdot [\dfrac{7}{6} \cdot \dfrac{1}{x^3} + o(\dfrac{1}{x^3})]
\\\\
=& \dfrac{7}{6}
\end{aligned}
]题目232
[
\lim_{x \to 0} \frac{\ln(1+\sin^2 x) - 6(\sqrt[3]{2-\cos x} - 1)}{x^4}
]解答
复合函数处理方法: 1. 强行泰勒展开(多项式计算量大) 2. 添项减项(精度随缘)
[
\ln(1 + \sin^2 x) - \sin ^2x \sim -\dfrac{1}{2}\sin^4x \sim -\dfrac{1}{2}x^4
][
(1 + x)^{\frac{1}{3}} - 1 - x \sim -\dfrac{1}{9} x^2
][
[1 + (1 - \cos x)]^{\frac{1}{3}} - 1 - \dfrac{1}{3}(1 - \cos x)\sim
-\dfrac{1}{9} (1 - \cos x)^2 \sim
-\dfrac{1}{36} x^4
][
\begin{aligned}
&\lim_{x \to 0} \frac{\ln(1+\sin^2 x) - 6(\sqrt[3]{2-\cos x} - 1)}{x^4}
\\\\
=&
\lim_{x \to 0} \frac{\ln(1+\sin^2 x) - \sin^2x + 2(1-\cos x)- 6(\sqrt[3]{2-\cos x} - 1)+\sin^2x - 2(1 - \cos x)
}{x^4}
\end{aligned}
][
\dfrac{\sin^2x - 2 + 2\cos x}{x^4} =
\dfrac{\cos x - 1}{2x^2} = -\dfrac{1}{4}
][
\begin{aligned}
&
\lim_{x \to 0} \frac{\ln(1+\sin^2 x) - \sin^2x}{x^4} -
\lim_{x \to 0} \frac{-2(1-\cos x) + 6(\sqrt[3]{2-\cos x} - 1)}{x^4}
\\\\
+&
\lim_{x \to 0} \frac{\sin^2x - 2(1 - \cos x)}{x^4}
\\\\
= & -\dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{4} = -\dfrac{7}{12}
\end{aligned}
]题目233
[
\lim_{x\to0}
\int_0^x\Big(\frac{\arctan t}{t}\Big)^{\dfrac{1}{\int_0^t\ln(1+u)du}}\cot x dt
]解答
[
\begin{aligned}
&
\lim_{x\to0}
\int_0^x\Big(\frac{\arctan t}{t}\Big)^{\dfrac{1}{\int_0^t\ln(1+u)du}}\cot x dt
\\\\
=&
\lim_{x\to0}
\dfrac{\displaystyle\int_0^x \Big(\dfrac{\arctan t}{t}\Big)^{\dfrac{1}{\int_0^t\ln(1+u)du}}dt}{\tan x}
\\\\
=&
\lim_{x\to0}
\Big(\dfrac{\arctan t}{t}\Big)^{\dfrac{1}{\int_0^t\ln(1+u)du}}dt
\\\\
&
\lim_{x\to0}
\dfrac{\ln(\dfrac{\arctan t}{t})}{\displaystyle\int_0^t \ln(1+u)du}
\\\\
=&
\lim_{x\to0}
\dfrac{\arctan t - t}{t\displaystyle\int_0^t udu}
\\\\
=&
-\dfrac{2}{3}
\\\\
&
\lim_{x\to0}
\int_0^x\Big(\frac{\arctan t}{t}\Big)^{\dfrac{1}{\int_0^t\ln(1+u)du}}\cot x dt
\\\\
=& e^{-\frac{2}{3}}
\end{aligned}
]题目234
[
\lim_{x\to+\infty}\Big[\frac{\ln(x+\sqrt{x^2+1})}{\ln(x+\sqrt{x^2-1})}\Big]^{x^2\ln x}
]解答
[
\lim\limits_{x\to+\infty}\frac{\ln(x+\sqrt{x^2-1})}{\ln x} = 1 \quad\Rightarrow\quad
\ln(x+\sqrt{x^2-1}) \sim \ln x
][
\lim\limits_{x\to+\infty}\frac{\sqrt{x^2+1} - \sqrt{x^2-1}}{\frac{1}{x}} = 1 \quad\Rightarrow\quad \sqrt{x^2+1} - \sqrt{x^2-1} \sim \dfrac{1}{x}
][
\begin{aligned}
原式
&=
\lim_{x\to+\infty} e^{x^2\ln x\cdot\ln(\frac{\ln(x+\sqrt{x^2+1})}{\ln(x+\sqrt{x^2-1})})}
\quad(幂指函数互化)
\\\\
&=
e^{\lim\limits_{x\to+\infty}x^2\ln x\cdot (\frac{\ln(x+\sqrt{x^2+1}) - \ln(x+\sqrt{x^2-1})}{\ln(x+\sqrt{x^2-1})})}
\quad(等价无穷小代换)
\\\\
&=
e^{\lim\limits_{x\to+\infty}x^2\ln x\cdot (\frac{\ln(x+\sqrt{x^2+1}) - \ln(x+\sqrt{x^2-1})}{\ln x})}
\quad(\ln(x+\sqrt{x^2-1}) \sim \ln x)
\\\\
&=
e^{\lim\limits_{x\to+\infty}x^2\cdot \Big((\ln(x+\sqrt{x^2+1}) - \ln(x+\sqrt{x^2-1})\Big)}
\quad =
e^{\lim\limits_{x\to+\infty}x^2\cdot \ln\frac{x+\sqrt{x^2+1}}{x+\sqrt{x^2-1}}}
\quad (\ln\frac{A}{B} = \ln A - \ln B)
\\\\
&=
e^{\lim\limits_{x\to+\infty}x^2\cdot \frac{x+\sqrt{x^2+1} - x - \sqrt{x^2-1}}{x+\sqrt{x^2-1}}}
\quad =
e^{\lim\limits_{x\to+\infty}x^2\cdot \frac{\sqrt{x^2+1} - \sqrt{x^2-1}}{x+\sqrt{x^2-1}}}
\quad(等价无穷小代换)
\\\\
&=
e^{\lim\limits_{x\to+\infty}x^2\cdot \frac{\frac{1}{x}}{x+\sqrt{x^2-1}}}
\quad =
e^{\lim\limits_{x\to+\infty}\frac{x}{x+\sqrt{x^2-1}}}
\quad(\sqrt{x^2+1} - \sqrt{x^2-1} \sim \dfrac{1}{x})
\\\\
&=
e^{\frac{1}{2}}
\end{aligned}
]题目235
设
f(x) 连续,
\lim\limits_{x\to0}\dfrac{f(x)}{x}=1 ,求极限
\lim\limits_{x\to0}\Big[ 1+\displaystyle\int_0^xtf(x^2-t^2)dt \Big]^{\dfrac{1}{(\tan x - x)\ln(1+x)}}解答
\(f(x)\) 连续 \(\\&\)
幂指函数,先取指对数,然后单独处理指数部分
[
\begin{aligned}
&
\lim_{x\to0} \dfrac{\ln(1 + \displaystyle\int_0^x tf(x^2 - t^2)dt)}{(\tan x - x) \ln(1 + x)}
\\\\
=&
\lim_{x\to0} \dfrac{\displaystyle\int_0^x tf(x^2 - t^2)dt}{\dfrac{1}{3}x^4}
\\\\
& \text{令} x^2 - t^2 = u, \text{则} -2tdt = du
\\\\
=&
\dfrac{3}{2}
\lim_{x\to0} \dfrac{\displaystyle\int_0^{x^2} f(u)du}{x^4}
\\\\
\xlongequal{L'}&
\dfrac{3}{4}
\lim_{x\to0} \dfrac{f(x^2)}{x^2}
\\\\
=&
\dfrac{3}{4}
\lim_{x\to0} \dfrac{f(x^2) - f(0)}{x^2 - 0}
\\\\
=&
\dfrac{3}{4}
f_+'(0)
\\\\
=&
\dfrac{3}{4}
\\\\
\end{aligned}
]故
\lim\limits_{x\to0}\Big[ 1+\displaystyle\int_0^xtf(x^2-t^2)dt \Big]^{\dfrac{1}{(\tan x - x)\ln(1+x)}} = e^{\frac{3}{4}}题目236
[
\lim_{x\to+\infty} \Big(x^{\frac{1}{x}} - 1\Big)^{\frac{1}{\ln x}}
]解答
这里介绍一个 对数函数的等价无穷大技巧:
若
x \to x_0 时,
A 与
B 是等价无穷小 (
A \sim B),则
\ln A 与
\ln B 是 等价无穷大
证明:
[
\text{欲证:}\lim_{x\to x_0} \dfrac{\ln A}{\ln B} = 1,\text{不妨证} \lim_{x\to x_0} \dfrac{\ln A}{\ln B} - 1 = 0
][
\lim_{x\to x_0} \dfrac{\ln A}{\ln B} - 1 = \lim_{x\to x_0} \dfrac{\ln A - \ln B}{\ln B} =
\lim_{x\to x_0} \dfrac{\ln\dfrac{A}{B}}{\ln B} = \dfrac{0}{\infty} = 0 \quad QED
]在本题中,取过指对数后,可利用该技巧:
[
\begin{aligned}
&\lim_{x\to +\infty} \dfrac{\ln (e^{\dfrac{\ln x}{x}} - 1)}{\ln x}
\\\\
=&\lim_{x\to +\infty}
\dfrac{\ln ({\dfrac{\ln x}{x}})}{\ln x}
\\\\
=&
\lim_{x\to +\infty}
\dfrac{\ln\ln x - \ln x}{\ln x}
\\\\
\xlongequal{L'}&
\lim_{x\to +\infty}
\dfrac{1 - \ln x}{\ln x}
\\\\
=& -1
\end{aligned}
]故原式 =
e^{-1}题目237
若
\lim\limits_{x\to0}\dfrac{\cos(xe^x)-e^{-\dfrac{x^2e^{2x}}{2}}}{x^\alpha}= \beta\ne0,求
\alpha,\beta解答
已知极限反求参数,不能使用洛必达,不能使用洛必达,不能使用洛必达 这个行为违背了洛必达的 先验性 在已知极限的情况下,再洛必达获得的新极限,不一定与原极限相等
由泰勒展开:
[
\cos(xe^x) = 1 - \dfrac{1}{2} (x^2e^{2x}) + \dfrac{1}{24}x^4e^{4x} + o(x^4e^{4x})
][
e^{-\dfrac{x^2e^{2x}}{2}} = 1 - \dfrac{1}{2}(x^2e^{2x}) + \dfrac{1}{8}(x^4e^{4x}) + o(x^4e^{4x})
]可以推得:
[
\cos(xe^x)-e^{-\dfrac{x^2e^{2x}}{2}} \sim -\dfrac{1}{12}x^4e^{4x}
]故:
[
\lim\limits_{x\to0}\dfrac{\cos(xe^x)-e^{-\dfrac{x^2e^{2x}}{2}}}{x^\alpha} =
\lim\limits_{x\to0} \dfrac{-\dfrac{1}{12}x^4}{x^\alpha} = \beta \ne 0
]由于 极限存在,且不为
0,故
\alpha = 4, \beta = - \dfrac{1}{12}题目238
[
\lim_{x\to0}\frac{\cos 2x - \cos x\sqrt{\cos 2x}}{x^k} = a \ne 0,\text{求k,a}
]解答
对 分子 恒等变形:
[
\begin{aligned}
\cos 2x - \cos x\sqrt{\cos 2x} &= \sqrt{\cos 2x} \cdot (\sqrt{\cos 2x} - \cos x)
\\\\
&= \sqrt{\cos 2x} \cdot \dfrac{\cos 2x - \cos^2 x}{\sqrt{\cos 2x} + \cos x}
\\\\
&= \dfrac{\sqrt{\cos 2x}}{\sqrt{\cos 2x} + \cos x} \cdot (2\cos^2 x - 1 - \cos^2 x)
\\\\
&= \dfrac{\sqrt{\cos 2x}}{\sqrt{\cos 2x} + \cos x} \cdot (\cos^2 x - 1)
\\\\
&= \dfrac{\sqrt{\cos 2x}}{\sqrt{\cos 2x} + \cos x} \cdot (- \sin^2 x)
\\\\
\end{aligned}
]故原式为
[
\begin{aligned}
\lim_{x\to0}\frac{\cos 2x - \cos x\sqrt{\cos 2x}}{x^k} &=
\lim_{x\to0} \dfrac{\sqrt{\cos 2x}}{\sqrt{\cos 2x} + \cos x} \cdot \frac{(- \sin^2 x)}{x^k}
\\\\
&=
-\dfrac{1}{2} \lim_{x\to0} \frac{\sin^2 x}{x^k}
\\\\
&=
-\dfrac{1}{2} \lim_{x\to0} \frac{x^2}{x^k}
\\\\
\end{aligned}
]由于 极限存在,故
k = 2, a = -\dfrac{1}{2}题目239
若
\lim\limits_{x\to0}\dfrac{ax^2+bx+1-e^{x^2-2x}}{x^2}=2,求
a,b的值
解答
由 泰勒展开:
[
e^{x^2 - 2x} - 1 = x^2 - 2x + \dfrac{1}{2}(x^2 - 2x)^2 + o(x)^2 = 3x^2 - 2x + o(x^2)
]故可对原式进行 泰勒展开:
[
\lim\limits_{x\to0}\dfrac{ax^2+bx+1-e^{x^2-2x}}{x^2} =
\lim\limits_{x\to0}\dfrac{(a - 3)x^2+(b + 2)x}{x^2}
]极限存在,故
b = -2, a = 5