题目356
已知
\lim\limits_{x\to0}\dfrac{e^xf(x)+\sin x}{x^2} = 1,求
\lim\limits_{x\to 0} \dfrac{f(x) + \sin x}{x^2}解答
像这种已知极限,反求抽象函数,最好的方法是 等式脱帽法,其次是 泰勒展开 配凑
由
\lim\limits_{x\to0}\dfrac{e^xf(x)+\sin x}{x^2} = 1 \quad\Rightarrow\quad \dfrac{e^xf(x)+\sin x}{x^2} = 1 + \alpha \quad 其中
\lim\limits_{x\to0} \alpha = 0[
e^xf(x)+\sin x = x^2 + o(x^2) \quad \Rightarrow \quad f(x) = \dfrac{x^2 - \sin x + o(x^2)}{e^x}
]代入所求极限:
[
\lim\limits_{x\to 0} \dfrac{f(x) + \sin x}{x^2} =
\lim\limits_{x\to 0} \dfrac{x^2 - \sin x + e^x\sin x}{e^xx^2}
]对于没有 抽象函数 在的极限,我们的手段就很多了,这里既可以 拆项 做,也可以 洛必达
[
\lim\limits_{x\to 0} \dfrac{x^2 - \sin x + e^x\sin x}{x^2} =
\lim\limits_{x\to 0} \dfrac{x^2}{x^2} +
\lim\limits_{x\to 0} \dfrac{\sin x(e^x - 1)}{x^2} =
2
]题目357
[
\lim_{x\to0^+} \bigg( \dfrac{x}{(e^x-1)\cos\sqrt{x}} \bigg)^{\dfrac{1}{(1+\sin x^2)^{\frac{1}{x}}-1}}
]解答
幂指函数求极限,先取指对数,然后单独处理指数部分
[
\begin{aligned}
&
\lim_{x\to0^+} \dfrac{\ln(\dfrac{x}{(e^x-1)\cos\sqrt{x}})}{(1+\sin x^2)^{\frac{1}{x}}-1}
\\\\
=&
\lim_{x\to0^+} \dfrac{x - (e^x-1)\cos\sqrt{x}}{[(e^x-1)\cos\sqrt{x}](1+\sin x^2)^{\frac{1}{x}}-1}
\\\\
=&
\lim_{x\to0^+} \dfrac{x - (e^x-1)\cos\sqrt{x}}{x^2}
\end{aligned}
]分子是加减法,且在加号处直接拆开精度不够,可以考虑 加减交叉项,或考虑 泰勒展开
[
(e^x - 1) \cdot \cos\sqrt{x} = [x + \dfrac{1}{2}x^2 + o(x^2)][1 - \dfrac{1}{2}x + \dfrac{1}{24}x^2 + o(x^2)] = x - \dfrac{1}{2}x^2+ \dfrac{1}{2}x^2 + o(x^2)
]故极限 = _{x0^+} = 0
原极限 = e^0 = 1
题目358
设
f(x) 连续,且
f(0) \ne 0,则
\lim\limits_{x\to 0} [1 + \displaystyle\int_0^x(x - t)f(t) dt]^{\dfrac{1}{x\int_0^xf(x - t)dt}}解答
幂指函数先取指对数,然后单独处理指数部分
变上限积分函数求极限,考虑求导去积分符号
而被积函数中如果含有积分上限变量,优先考虑分离
\displaystyle\int_0^x(x - t)f(t) dt = x\displaystyle\int_0^xf(t) dt - \displaystyle\int_0^xtf(t) dt\displaystyle x\int_0^xf(x - t)dt \xlongequal{\text{令}x-t=u}\displaystyle x\int_0^x f(u)du[
\begin{aligned}
&
\lim\limits_{x\to 0} \dfrac{x\displaystyle\int_0^xf(t) dt - \displaystyle\int_0^xtf(t) dt}{x\displaystyle\int_0^xf(u)du}
\\\\
\xlongequal{L'} &
\lim_{x\to 0} \dfrac{\displaystyle\int_0^xf(t) dt + xf(x) - xf(x)}
{\displaystyle\int_0^xf(u)du + xf(x)}
\\\\
= &
\lim_{x\to 0} \dfrac{\displaystyle\int_0^xf(t) dt}
{\displaystyle\int_0^xf(t)dt + xf(x)}
\\\\
= &
\lim_{x\to 0} \dfrac{xf(\xi)}
{xf(\xi) + xf(x)}
\\\\
= &
\lim_{x\to 0} \dfrac{f(\xi)}
{f(\xi) + f(x)}
\\\\
= &
\lim_{x\to 0} \dfrac{f(0)}
{f(0) + f(0)}
\\\\
=& \dfrac{1}{2}
\end{aligned}
] 倒数第四步用了 积分中值定理,然后又由于
f(x) 连续,且
f(0) \ne 0 故直接带入
故原极限 =
e^{\frac{1}{2}}题目359
[
\lim_{x\to0}\dfrac{\displaystyle\int_0^{2x}|t - x|\sin t dt}{|x|^3}
]解答
遇到绝对值,先考虑去绝对值,这里直接分类讨论即可
[
\begin{aligned}
\lim_{x\to0^+}\dfrac{\displaystyle\int_0^{2x}|t - x|\sin t dt}{|x|^3} &=
\lim_{x\to0^+}\dfrac{\displaystyle\int_0^{2x}|t - x|t dt}{|x|^3}
\\\\
&=
\lim_{x\to0^+}\dfrac{\displaystyle\int_0^{x}(xt - t^2) dt + \int_x^{2x}(t^2 - xt) dt}{x^3}
\end{aligned}
]写到这一步,就不用考虑用洛必达去积分符号了,可以考虑直接把积分解出来
[
\lim_{x\to0^+}\dfrac
{(\dfrac{1}{2}xt^2 - \dfrac{1}{3}t^3)\bigg|_0^x + (\dfrac{1}{3}t^3 - \dfrac{1}{2}xt)\bigg|_x^{2x}}{x^3} = 1
]然后不难发现,分母从头到尾都没动过,故其实是不用分类讨论的,可以直接得出:
[
\lim_{x\to0}\dfrac{\displaystyle\int_0^{2x}|t - x|\sin t dt}{|x|^3} = 1
]题目360
[
\lim_{x\to0}\dfrac{e^{(1+x)^{\frac{1}{x}}} - (1 + x)^{\frac{e}{x}}}{x^2}
]解答
[
\begin{aligned}
&
\lim_{x\to0}\dfrac{e^{(1+x)^{\frac{1}{x}}} - (1 + x)^{\frac{e}{x}}}{x^2}
\\\\
=&
\lim_{x\to0}\dfrac{e^{(1+x)^{\frac{1}{x}}} - e^{\frac{e\ln(1 + x)}{x}}}{x^2}
\\\\
=&
e^e \cdot \lim_{x\to0}\dfrac{e^{e^{\frac{\ln(1 + x)}{x}} - \frac{e\ln(1 + x)}{x}} - 1}{x^2}
\\\\
=&
e^{e + 1} \cdot \lim_{x\to0}\dfrac{e^{\frac{\ln(1 + x) - x}{x}} - \frac{\ln(1 + x)}{x}}{x^2}
\\\\
=&
e^{e + 1} \cdot \lim_{x\to0}\dfrac{e^{\frac{\ln(1 + x) - x}{x}} - 1 - \frac{\ln(1 + x) - x}{x}}{x^2}
\\\\
\end{aligned}
][
e^{\frac{\ln(1 + x) - x}{x}} - 1 \sim \frac{\ln(1 + x) - x}{x} \sim -\dfrac{1}{2}x
][
e^x - 1 - x \sim \frac{1}{2} x^2
][
e^{\frac{\ln(1 + x) - x}{x}} - 1 - \frac{\ln(1 + x) - x}{x} \sim \frac{1}{2} \cdot \frac{1}{4} \cdot x^2 = \dfrac{1}{8}x^2
]故原式 = e^{e + 1} _{x0} = e^{e + 1}
题目361
[
\lim_{n\to\infty}\sum_{k=1}^n(1-\dfrac{k}{n})\ln(1+\dfrac{k}{n^2})
]解答
无限项的合式极限,考研范围内只需要掌握的两种方法:
- 放缩夹逼
- 定积分定义
本题形式很像是 定积分定义,但是怎么都凑不出想要的形式
这时又看见了
\ln(1 + x) 的因式,故想到一个常见不等式
\dfrac{x}{x+1}<\ln(1 + x) < x[
\begin{aligned}
\frac{\dfrac{k}{n^2}}{\dfrac{k}{n^2} + 1} \lt &\ln(1+\dfrac{k}{n^2}) \lt \dfrac{k}{n^2}
\\\\
\frac{k}{n^2 + k} \lt &\ln(1+\dfrac{k}{n^2}) \lt \dfrac{k}{n^2}
\\\\
(1 - \dfrac{k}{n}) \cdot \frac{k}{n^2 + k} < &(1-\dfrac{k}{n})\ln(1+\dfrac{k}{n^2}) < (1 - \dfrac{k}{n}) \cdot \dfrac{k}{n^2}
\\\\
\dfrac{k}{n^2 + k} - \dfrac{k^2}{n^3 + nk} < &(1-\dfrac{k}{n})\ln(1+\dfrac{k}{n^2}) < \dfrac{k}{n^2} - \dfrac{k^2}{n^3}
\end{aligned}
]右侧可以用定积分定义,左边放缩分母继续夹逼
右侧:
[
\lim_{n\to\infty}\sum_{k=1}^n(\dfrac{k}{n^2} - \dfrac{k^2}{n^3}) =
\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n (\dfrac{k}{n} - \dfrac{k^2}{n^2}) = \int_0^1 (x - x^2)dx = \dfrac{1}{6}
]左侧:
[
\begin{aligned}
\frac{k}{n^2 + n} < &\frac{k}{n^2 + k} < \frac{k}{n^2}
\\\\
\sum_{k=1}^n\frac{k}{n^2 + n} < &\sum_{k=1}^n\frac{k}{n^2 + k} < \sum_{k=1}^n\frac{k}{n^2}
\\\\
\frac{\dfrac{n(n+1)}{2}}{n^2 + n} < &\sum_{k=1}^n\frac{k}{n^2 + k} < \frac{\dfrac{n(n+1)}{2}}{n^2}
\\\\
\dfrac{1}{2} < &\lim_{n\to\infty}\sum_{k=1}^n\frac{k}{n^2 + k} < \dfrac{1}{2}
\\\\
\end{aligned}
]同理:
[
\begin{aligned}
\dfrac{k^2}{n^3 + n^2} < &\dfrac{k^2}{n^3 + nk} < \dfrac{k^2}{n^3}
\\\\
\sum_{k=1}^n\dfrac{k^2}{n^3 + n^2} < &\sum_{k=1}^n\dfrac{k^2}{n^3 + nk} < \sum_{k=1}^n\dfrac{k^2}{n^3}
\\\\
\dfrac{\dfrac{n(n+1)(2n+1)}{6}}{n^3 + n^2} < &\sum_{k=1}^n\dfrac{k^2}{n^3 + nk} < \dfrac{\dfrac{n(n+1)(2n+1)}{6}}{n^3}
\\\\
\dfrac{1}{3} < &\lim_{n\to\infty}\sum_{k=1}^n\dfrac{k^2}{n^3 + nk} < \dfrac{1}{3}
\\\\
\end{aligned}
]故:
\lim\limits_{n\to\infty}(\dfrac{k}{n^2 + k} - \dfrac{k^2}{n^3 + nk}) = \dfrac{1}{6}于是有:
[
\dfrac{1}{6} < \lim\limits_{n\to\infty}(1-\dfrac{k}{n})\ln(1+\dfrac{k}{n^2}) < \dfrac{1}{6}
]由夹逼准则可得:
\lim\limits_{n\to\infty}(1-\dfrac{k}{n})\ln(1+\dfrac{k}{n^2}) = \dfrac{1}{6}题目362
[
\lim_{n\to\infty}[\dfrac{n}{n^2 + n + \ln 1} + \dfrac{n}{n^2 + n + \ln 2} + \cdots + \dfrac{n}{n^2 + n + \ln n}]^n
]解答
幂指函数化成指对数,单独处理指数部分:
[
A = \lim_{n\to\infty} n\ln [\dfrac{n}{n^2 + n + \ln 1} + \dfrac{n}{n^2 + n + \ln 2} + \cdots + \dfrac{n}{n^2 + n + \ln n}]
]无穷项合式极限,考虑放缩:
[
\begin{aligned}
\sum_{k=1}^n \dfrac{n}{n^2 + n + \ln n} \le &
\sum_{k=1}^n \dfrac{n}{n^2 + n + \ln k} \le
\sum_{k=1}^n \dfrac{n}{n^2 + n}
\\\\
\dfrac{n^2}{n^2 + n + \ln n} \le &
\sum_{k=1}^n \dfrac{n}{n^2 + n + \ln k} \le
\dfrac{n^2}{n^2 + n}
\\\\
\end{aligned}
]求出左侧极限:
[
\lim_{n\to\infty} n\ln \dfrac{n^2}{n^2 + n + \ln n} =
\lim_{n\to\infty} \dfrac{- n^2 - n\ln n}{n^2 + n + \ln n} = -1
]求出右侧极限:
[
\lim_{n\to\infty} n\ln \dfrac{n^2}{n^2 + n} =
\lim_{n\to\infty} \dfrac{- n^2}{n^2 + n} = -1
]由夹逼准则可得:
[
\lim_{n\to\infty} \sum_{k=1}^n \dfrac{n}{n^2 + n + \ln k} = -1
]故原极限:
[
\lim_{n\to\infty}[\dfrac{n}{n^2 + n + \ln 1} + \dfrac{n}{n^2 + n + \ln 2} + \cdots + \dfrac{n}{n^2 + n + \ln n}]^n = e^{-1}
]题目363
[
\lim_{n\to\infty} [\sum_{k=1}^n \dfrac{1}{\sqrt{n^2 + k^2}}]^n
]解答
幂指函数化成指对数,单独处理指数部分:
[
A = \lim_{n\to\infty} n \ln \sum_{k=1}^n \dfrac{1}{\sqrt{n^2 + k^2}}
]单独观察对数部分,由于
k 与
n 是同一个数量级的
o(n^2),故考虑定积分定义
[
\lim_{n\to\infty}\sum_{k=1}^n \dfrac{1}{\sqrt{n^2 + k^2}} =
\lim_{n\to\infty} \dfrac{1}{n} \sum_{k=1}^n \dfrac{1}{\sqrt{1 + \dfrac{k^2}{n^2}}} = \int_0^1 \dfrac{1}{\sqrt{x^2 + 1}}dx = \ln(1+\sqrt{2})
]由于该结果是非零因式,直接代入指数的极限中:
[
A = \lim_{n\to\infty} n \ln \sum_{k=1}^n \dfrac{1}{\sqrt{n^2 + k^2}} =
\ln\ln(1+\sqrt{2}) \cdot \lim_{n\to\infty} n
]由于
1 < 1 + \sqrt{2} < e,故
\ln(1 + \sqrt{2}) < 1,因此
\ln\ln(1+\sqrt{2}) < 0由此可知:
A = - \infty故原极限为:
e^A = 0题目364
下列结论中正确的是
(A)若
\lim\limits_{n\to\infty}x_n = 0,且
\lim\limits_{n\to\infty} f(x_n) = A,则
\lim\limits_{x\to0}f(x) = A(B)若
\lim\limits_{n\to\infty}x_n = 0,且
\lim\limits_{x\to0} f(x) = A,则
\lim\limits_{n\to\infty} f(x_n) = A(C)若
\lim\limits_{n\to\infty}f(n) = A,则
\lim\limits_{x\to+\infty}f(x) = A(D)若
\lim\limits_{x\to+\infty}f(x) = A,则
\lim\limits_{n\to\infty}f(n) = A解答
(A)选项
显然不对,我们直接构造分段函数
f(x) = \begin{cases} A & x\in x_n \\\\ 1 & x\not\in x_n \end{cases}则
\lim\limits_{n\to\infty} = f(x_n) = A,且
\lim\limits_{x\to0}f(x) \not \exists(B)选项
错误,
\lim\limits_{x\to0} f(x) = A 说的是去心邻域情况,故我们可以挖空
f(x) 在
x = 0 处的定义
然后令
x_n \equiv 0,则
f(x_n) = f(0) 显然无意义
如果这题限制
f(x) 必须在
x=0 邻域内有定义,则可以让
x=0 为可去间断点
(C)选项
显然不对,构造分段函数
f(x) = \begin{cases} A & x \in \mathbf{N} \\\\ x & x\not\in \mathbf{N} \end{cases}(D)选项
显然正确,海涅准则:收敛函数
\Leftrightarrow 任意子列都收敛
题目365
设数列 {
x_n},已知
\lim\limits_{n\to\infty}(x_{n+1} - x_n) = 0,则下列结论正确的是( )
(A){
x_n} 必收敛;
(B)若 {
x_n} 单调,则 {
x_n} 必收敛;
(C)若 {
x_n} 有界,则 {
x_n} 必收敛;
(D)若 {
x_{3n}} 收敛,则 {
x_n} 必收敛;
解答
(A)选项
显然错,
\lim\limits_{n\to\infty}(x_{n+1} - x_n) = 0,可能是 "
\infty - \infty" 型
例如:
x_n = \sqrt{n},
\lim\limits_{n\to\infty}(x_{n+1} - x_n) = \lim\limits_{n\to\infty} \sqrt{n + 1} - \sqrt{n} = \lim\limits_{n\to\infty} \dfrac{1}{\sqrt{n + 1} + \sqrt{n}} = 0(B)选项
显然错,反例:
x_n = \sqrt{n}(C)选项
错误,反例:
\sin\sqrt{n}\lim\limits_{n\to\infty}(x_{n+1} - x_n) \rightarrow \lim\limits_{x\to+\infty}(\sin\sqrt{x + 1} - \sin\sqrt{x}) = -\lim\limits_{x\to+\infty}\cos\sqrt{\xi} \cdot \dfrac{1}{2\sqrt{\xi}} = 0(D)选项
正确,
\lim\limits_{n\to\infty}x_{3n} \xlongequal[\text{令}]{\text{存在}} A,则
\lim\limits_{n\to\infty}(x_{3n+1} - x_{3n}) = \lim\limits_{n\to\infty}x_{3n+1} - \lim\limits_{n\to\infty}x_{3n} = 0\Rightarrow\lim\limits_{n\to\infty}x_{3n+1} = A同理
\lim\limits_{n\to\infty}x_{3n+2} = A,则所有子列都收敛到同一个值
\Rightarrow 原数列也收敛该值
题目366
设
f(x) 有连续一阶导数,且
0 < f'(x) \le \dfrac{\ln(2 + x^2)}{2(1+x^2)}数列
x_0 = a, x_n = f(x_{n-1}), n = 1, 2, \cdots.
证明:极限
\lim\limits_{n\to\infty} x_n 存在且是方程
f(x) = x 的唯一实根.
解答(逆用牛顿莱布尼茨公式)
由于
f'(x) > 0,则数列 {
x_n} 单调,又
[
\begin{aligned}
|x_n| &= |f(x_{n-1})| = |f(x_0) + f(x_{n-1}) - f(x_0)| = |f(x_0) + \displaystyle\int_{x_0}^{x_{n-1}}f'(x)dx|
\\\\
& \le
|f(x_0)| + |\displaystyle\int_{x_0}^{x_{n-1}}f'(x)dx|
\le
|f(x_0)| + |\displaystyle\int_{x_0}^{x_{n-1}}\dfrac{\ln(2 + x^2)}{2(1+x^2)}dx|
\\\\
& \le
|f(x_0)| + |\displaystyle\int_{-\infty}^{+\infty}\dfrac{\ln(2 + x^2)}{2(1+x^2)}dx|
\end{aligned}
]易知
\displaystyle\int_{-\infty}^{+\infty}\dfrac{\ln(2 + x^2)}{2(1+x^2)}dx 收敛(比较在广义瑕点的阶)
由单调有界准则:{
x_n} 收敛,故
\lim\limits_{n\to\infty} x_n 存在
令
\lim\limits_{n\to\infty} x_n = A,则有
A = f(A),故
x = A 是
f(x) = x 的一个解
于是
f(x) = x 至少有一个解,现证明至多有一个解
令
F(x) = f(x) - x,则
0 < F'(x) = f'(x) - 1 \le \dfrac{\ln(2 + x^2)}{2(1+x^2)} < 1,故
F(x) 单调递增
所以
F(x) 至多有一解,综上
x = A 为
f(x) = x 的唯一解
题目367
设
p(x) = a + bx + cx^2 + dx^3,且当
x\to 0 时,
p(x) - \ln(x + \sqrt{1 + x^2}) 是比
x^3 高阶的无穷小,则( )
(A)
a = 1 (B)
b = 2 (C)
c = 3 (D)
d = -\frac{1}{6}解答
常用展开:
\ln(x+\sqrt{1+x^2}) = x - \dfrac{1}{6}x^3 + o(x^3)正常做,直接用抽象泰勒展开即可
但是这题是选择题,应该用选择题的技巧
首先
\ln(x + \sqrt{1 + x^2}) 是奇函数,故
c = 0又
\ln(x + \sqrt{1 + x^2}) \sim x ,故
a = 0, b = 1A、B、C 全部划掉,这题选 (D)
加餐题目367
设
f(x) = x + a\ln(a + x) + \dfrac{bx\sin x}{1+x^2}, g(x) = kx^3若
f(x) 与
f(x) 在
x\to 0 时是等价无穷小,求参数.
解答
泰勒展开:
[
a\ln(1 + x) = ax - \dfrac{a}{2}x^2 + \dfrac{a}{3}x^3 + o(x^3)
][
\dfrac{1}{1 + x^2} = 1 - x^2 + x^4 + o(x^4)
][
x\sin x = x^2 - \dfrac{1}{6}x^4 + o(x^4)
][
\dfrac{bx\sin x}{1+x^2} = bx^2 + o(x^3)
][
f(x) = x + ax - \dfrac{a}{2}x^2 + \dfrac{a}{3}x^3+ bx^2 + o(x^3) = (1 + a)x + (b - \dfrac{a}{2})x^2 + \dfrac{a}{3}x^3 + o(x^3)
]故
a = -1, b = -\dfrac{1}{2}, k = -\dfrac{1}{3}