欢迎来到《每周CV论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。
模型蒸馏是非常重要的模型压缩方法,在学术界研究非常广泛,本次我们来简单给大家推荐一些初入该领域值得阅读的工作。
作者&编辑 | 言有三
1 基于优化目标驱动的知识蒸馏框架
Hinton最早在文章“Distilling the knowledge in a neural network”中提出了知识蒸馏的概念,其核心思想是一旦复杂网络模型训练完成,便可以用另一种训练方法从复杂模型中提取出来更小的模型。
文章引用量:11000+
推荐指数:✦✦✦✦✦
[1] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015, 2(7).
2 基于特征匹配约束的知识蒸馏框架
上述基本的蒸馏框架以优化目标来约束teacher模型和student模型进行协同学习,模型学习的具体细节难以控制,会让训练不稳定且缓慢,更通用的方法其实是利用隐藏层特征来进行匹配约束,典型框架是FitNets。
文章引用量:2000+
推荐指数:✦✦✦✦✦
[2] Romero A, Ballas N, Kahou S E, et al. Fitnets: Hints for thin deep nets[J]. arXiv preprint arXiv:1412.6550, 2014.
[3] Huang Z, Wang N. Like what you like: Knowledge distill via neuron selectivity transfer[J]. arXiv preprint arXiv:1707.01219, 2017.
3 自蒸馏框架
在上面我们介绍的框架中,假设教师模型一定是比学生模型表现更好,但是教师模型的存在增加了训练的难度,而且教师模型的存在是否一定是必要的,研究者后面开始思考不需要教师模型的框架,这些可以统一归为自蒸馏框架。
文章引用量:1000+
推荐指数:✦✦✦✦✧
[4] Zhang Y, Xiang T, Hospedales T M, et al. Deep mutual learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 4320-4328.
[5] Zhang L, Song J, Gao A, et al. Be your own teacher: Improve the performance of convolutional neural networks via self distillation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 3713-3722.
4 对知识蒸馏的理解
关于知识蒸馏本身的有效性问题,这几年研究者有不少新的发现,比如知识蒸馏到底是不是真的比从头训练小模型更好,教师模型的存在是必要的吗,教师模型是不是越强越好,与剪枝量化框架的结合,大家也可以多关注关注。
文章引用量:300+
推荐指数:✦✦✦✦✧
[6] Cho J H, Hariharan B. On the efficacy of knowledge distillation[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 4794-4802.
[7] Yuan L, Tay F E H, Li G, et al. Revisit knowledge distillation: a teacher-free framework[J]. 2019.
5 如何实战
为了帮助大家掌握模型优化压缩的相关知识!我们推出了相关的专栏课程《深度学习之模型优化:理论与实践》,讲解模型剪枝、模型量化、模型蒸馏等方向的理论与实践,感兴趣可以进一步阅读:
【视频课】AI必学,超10小时,4大模块,掌握模型优化核心技术!
总结
本次我们介绍了模型蒸馏的一些典型研究,从事相关方向的朋友可以通过阅读这些文章进行初步了解,模型蒸馏是掌握模型压缩任务的必经之路。
有三AI- CV夏季划
如何系统性地从零进阶计算机视觉,永久系统性地跟随我们社区学习CV的相关内容,请关注有三AI-CV夏季划组,阅读了解下文:
【CV夏季划】2022年正式入夏,从理论到实践,如何系统性进阶CV?(产学研一体的超硬核培养方式)
转载文章请后台联系
侵权必究