前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >单细胞韧皮部研究代码解析2--comparison_denyer2019.R

单细胞韧皮部研究代码解析2--comparison_denyer2019.R

原创
作者头像
小胡子刺猬的生信学习123
发布2023-04-08 18:16:23
2720
发布2023-04-08 18:16:23
举报
文章被收录于专栏:文献分享及代码学习

单细胞韧皮部研究代码解析1-QC_filtering.R:https://cloud.tencent.com/developer/article/2256814?areaSource=&traceId=

今天继续给大家分享这篇作者的代码,在很多人做单细胞数据分析的时候,,目前是伴随单细胞组学的发展,如何将前人发表的单细胞转录组数据与获得的单细胞数据进行整合,这篇文章的作者提供了一个思路。

代码来源:https://github.com/tavareshugo/publication_Otero2022_PhloemPoleAtlas/blob/master/analysis/02-comparison_denyer2019.R

代码解析

代码语言:javascript
复制
###data及R包的读入
###作者这里选用的是scater进行后续的分析,这里需要自己提前安装,可以用conda先构建一个scater的环境,后续lib.loc进行调用
library(data.table)
library(scater)
library(scran)
library(ggplot2)
library(patchwork)

# set seed for reproducible results
set.seed(1001)

# set ggplot2 theme
theme_set(theme_bw() + theme(text = element_text(size = 14)))

# source util functions
#这里还是作者在github上分享的自己的R代码,其中有getReducedDim函数,需要提前下载下来
source("analysis/functions/utils.R")

# Marker genes whose promoters were used for cell sorting
markers <- data.table(name = c("APL", "MAKR5", "PEARdel", "S17", "sAPL"),
                      id = c("AT1G79430", "AT5G52870", "AT2G37590", "AT2G22850", "AT3G12730"))


# Read data ---------------------------------------------------------------

# ring data both soft and hard filtered
ring_soft <- readRDS("data/processed/SingleCellExperiment/ring_batches_softfilt.rds")
ring_hard <- readRDS("data/processed/SingleCellExperiment/ring_batches_hardfilt.rds")

# all batches, both soft and hard filtered
all_soft <- readRDS("data/processed/SingleCellExperiment/all_batches_softfilt.rds")
all_soft$dataset <- ifelse(grepl("denyer", all_soft$Sample), "Denyer et al 2019", "ring")

all_hard <- readRDS("data/processed/SingleCellExperiment/all_batches_hardfilt.rds")
all_hard$dataset <- ifelse(grepl("denyer", all_hard$Sample), "Denyer et al 2019", "ring")



# Comparison with Denyer - hard filter ------------------------------------

# plot things together
##作者前面已经确定了UMAP-MNN_30是最符合自己数据集的降维方式,所以这里自己调用的时候需要更改
##这里是根据ggthemes这个包的不同颜色进行填充对上面读入的all_hard data 进行可视化:scale_colour_tableau
p1 <- ggplot(getReducedDim(all_hard, "UMAP-MNN_30"), aes(V1, V2, group = cluster_mnn)) +
  geom_point(aes(colour = cluster_mnn), show.legend = FALSE) +
  geom_label(stat = "centroid", aes(label = cluster_mnn), size = 3,
             label.padding = unit(0.1, "lines")) +
  ggthemes::scale_colour_tableau(palette = "Tableau 20") +
  labs(x = "UMAP 1", y = "UMAP 2")

p2 <- ggplot(getReducedDim(all_hard, "UMAP-MNN_30"), aes(V1, V2)) +
  geom_point(aes(colour = dataset)) +
  labs(x = "UMAP 1", y = "UMAP 2") +
  scale_colour_brewer(palette = "Dark2")

p3 <- ggplot(getReducedDim(all_hard, "UMAP-MNN_30"), aes(V1, V2)) +
  ggpointdensity::geom_pointdensity(show.legend = FALSE) +
  labs(x = "UMAP 1", y = "UMAP 2") +
  scale_colour_viridis_c(option = "magma") +
  facet_grid(~ dataset)

(p1 | p2) / p3 + plot_annotation(tag_levels = "A") + plot_layout(guides = "collect")


# plot genes mentioned in Denyer2019 Fig 2D
temp <- getReducedDim(all_hard, "UMAP-MNN_30", genes = c("AT3G58190", "AT1G79430", "AT5G47450"),
              melted = TRUE)
ggplot(temp[order(expr, na.last = FALSE)], aes(V1, V2)) +
  geom_point(aes(colour = expr)) +
  scale_colour_viridis_c() +
  facet_grid(dataset ~ id) +
  labs(x = "UMAP 1", y = "UMAP 2")


# Comparison with Denyer - soft filter -------------------------------------
***
# plot things together
# cluster_mnn:这里是作者的分群数据
# dataset:拟整合的Denyer 的数据集
p1 <- ggplot(getReducedDim(all_soft, "UMAP-MNN_30"), aes(V1, V2, group = cluster_mnn)) +
  geom_point(aes(colour = cluster_mnn), show.legend = FALSE) +
  geom_label(stat = "centroid", aes(label = cluster_mnn), size = 3,
             label.padding = unit(0.1, "lines")) +
  ggthemes::scale_colour_tableau(palette = "Tableau 20") +
  labs(x = "UMAP 1", y = "UMAP 2")

p2 <- ggplot(getReducedDim(all_soft, "UMAP-MNN_30"), aes(V1, V2)) +
  geom_point(aes(colour = dataset)) +
  labs(x = "UMAP 1", y = "UMAP 2") +
  scale_colour_brewer(palette = "Dark2")

p3 <- ggplot(getReducedDim(all_soft, "UMAP-MNN_30"), aes(V1, V2)) +
  ggpointdensity::geom_pointdensity(show.legend = FALSE) +
  labs(x = "UMAP 1", y = "UMAP 2") +
  scale_colour_viridis_c(option = "magma") +
  facet_grid(~ dataset)

(p1 | p2) / p3 + plot_annotation(tag_levels = "A") + plot_layout(guides = "collect")
***

# plot genes mentioned in Denyer2019 Fig 2D
# 选取部分已知的marker 基因进行可视化
temp <- getReducedDim(all_soft, "UMAP-MNN_30", genes = c("AT3G58190", "AT1G79430", "AT5G47450"),
                      melted = TRUE)
temp$expr <- ifelse(temp$expr == 0, NA, temp$expr)
ggplot(temp[order(expr, na.last = FALSE)], aes(V1, V2)) +
  geom_point(aes(colour = expr)) +
  scale_colour_viridis_c() +
  facet_grid(dataset ~ id) +
  labs(x = "UMAP 1", y = "UMAP 2")


# Contaminating layers ----------------------------------------------------
# plot genes identifying collumela and epidermis
# 选用已知的中柱和表皮的marker 基因,对all_hard和all_soft数据集进行可视化

# hard filtered data
temp <- getReducedDim(all_hard, "UMAP-MNN_30",
                      genes = c("AT1G79580", "AT3G29810", "AT5G58580", "AT5G14750"),
                      melted = TRUE)
temp$expr <- ifelse(temp$expr == 0, NA, temp$expr)
ggplot(temp[order(expr, na.last = FALSE)], aes(V1, V2)) +
  geom_point(aes(colour = expr)) +
  scale_colour_viridis_c() +
  facet_grid(dataset ~ id) +
  labs(x = "UMAP 1", y = "UMAP 2")


# soft filtered data
temp <- getReducedDim(all_soft, "UMAP-MNN_30",
                      genes = c("AT1G79580", "AT3G29810", "AT5G58580", "AT5G14750"),
                      melted = TRUE)
temp$expr <- ifelse(temp$expr == 0, NA, temp$expr)
ggplot(temp[order(expr, na.last = FALSE)], aes(V1, V2)) +
  geom_point(aes(colour = expr)) +
  scale_colour_viridis_c() +
  facet_grid(dataset ~ id) +
  labs(x = "UMAP 1", y = "UMAP 2")


# Collumela
temp <- getReducedDim(all_hard, "UMAP-MNN_30", genes = c("AT1G79580", "AT1G13620", "AT2G04025"),
                      melted = TRUE)
ggplot(temp[order(expr, na.last = FALSE)], aes(V1, V2)) +
  geom_point(aes(colour = expr)) +
  scale_colour_viridis_c() +
  facet_grid(dataset ~ id) +
  labs(x = "UMAP 1", y = "UMAP 2")

# Epidermis - actually AT2G46410 is also expressed in "stele"
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150583/
temp <- getReducedDim(all_hard, "UMAP-MNN_30", genes = c("AT5G14750", "AT1G79840", "AT2G46410"),
                      melted = TRUE)
ggplot(temp[order(expr, na.last = FALSE)], aes(V1, V2)) +
  geom_point(aes(colour = expr)) +
  scale_colour_viridis_c() +
  facet_grid(dataset ~ id) +
  labs(x = "UMAP 1", y = "UMAP 2")

# Genes used for sorting
# 前期用于分选的marker基因进行可视化
temp <- getReducedDim(all_hard, "UMAP-MNN_30",
                      genes = unique(markers$id), melted = TRUE)
temp <- merge(temp, markers, by = "id")
ggplot(temp[order(expr, na.last = FALSE)], aes(V1, V2)) +
  geom_point(aes(colour = expr)) +
  scale_colour_viridis_c() +
  facet_grid(dataset ~ name) +
  labs(x = "UMAP 1", y = "UMAP 2")

总结

通过前面的代码解析,发现是作者是提前把denyer的数据进行了整合,主要的可视化的代码是*** ***里面的内容。首先时作者读入了soft和hard 的data,把自己以前进行分选的marker基因及已知的marker基因进行整合数据集的可视化,去表明整合后的数据集都能定位到相似的位置,验证自己的数据集的可靠性。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 代码解析
  • 总结
相关产品与服务
命令行工具
腾讯云命令行工具 TCCLI 是管理腾讯云资源的统一工具。使用腾讯云命令行工具,您可以快速调用腾讯云 API 来管理您的腾讯云资源。此外,您还可以基于腾讯云的命令行工具来做自动化和脚本处理,以更多样的方式进行组合和重用。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档