目标:实现组织机构维度的设计及构建
路径
实施
需求:实现组织机构维度表的构建,得到每个工程师对应的组织机构信息
设计
org_employee:员工信息表【员工id、员工编码、员工名称、用户系统id】
select empid,empcode,empname,userid from org_employee;
org_empposition:员工岗位信息表【员工id、岗位id】
select empid,positionid from org_empposition;
org_position:岗位信息表【岗位id、岗位编码、岗位名称、部门id】
select positionid,posicode,posiname,orgid from org_position;
org_organization:部门信息表【部门id、部门编码、部门名称】
select orgid,orgcode,orgname from org_organization;
实现
建维度表
-- 创建组织机构维度表,组织机构人员是经常变动的,所以按照日期分区
create external table if not exists one_make_dws.dim_emporg(
empid string comment '人员id'
, empcode string comment '人员编码(erp对应的账号id)'
, empname string comment '人员姓名'
, userid string comment '用户系统id(登录用户名)'
, posid string comment '岗位id'
, posicode string comment '岗位编码'
, posiname string comment '岗位名称'
, orgid string comment '部门id'
, orgcode string comment '部门编码'
, orgname string comment '部门名称'
) comment '组织机构维度表'
partitioned by (dt string)
stored as orc
location '/data/dw/dws/one_make/dim_emporg';
抽取数据
-- 先根据dwd层的表进行关联,然后分别把数据取出来
insert overwrite table one_make_dws.dim_emporg partition(dt='20210101')
select
emp.empid as empid
, emp.empcode as empcode
, emp.empname as empname
, emp.userid as userid
, pos.positionid as posid
, pos.posicode as posicode
, pos.posiname as posiname
, org.orgid as orgid
, org.orgcode as orgcode
, org.orgname as orgname
from one_make_dwd.org_employee emp
left join one_make_dwd.org_empposition emppos
on emp.empid = emppos.empid and emp.dt = '20210101' and emppos.dt = '20210101'
left join one_make_dwd.org_position pos
on emppos.positionid = pos.positionid and pos.dt = '20210101'
left join one_make_dwd.org_organization org
on pos.orgid = org.orgid and org.dt = '20210101';
小结**
目标:实现仓库维度、物流维度的构建
路径
实施
仓库维度
建表
-- 仓库维度表
create external table if not exists one_make_dws.dim_warehouse(
code string comment '仓库编码'
, name string comment '仓库名称'
, company_id string comment '所属公司'
, company string comment '公司名称'
, srv_station_id string comment '所属服务网点ID'
, srv_station_name string comment '所属服务网点名称'
)comment '仓库维度表'
partitioned by (dt string)
stored as orc
location '/data/dw/dws/one_make/dim_warehouse';
加载
insert overwrite table one_make_dws.dim_warehouse partition(dt='20210101')
select
warehouse.code as code
, warehouse.name as name
, warehouse.company as company_id
, cmp.compmay as compmay
, station.id as srv_station_id
, station.name as srv_station_name
from
one_make_dwd.ciss_base_warehouse warehouse
-- 关联公司信息表
left join (
select
ygcode as company_id, max(companyname) as compmay
from one_make_dwd.ciss_base_baseinfo where dt='20210101'
-- 需要对company信息进行分组去重,里面有一些重复数据
group by ygcode) cmp
on warehouse.dt = '20210101' and cmp.company_id = warehouse.company
-- 关联服务网点和仓库关系表
left join one_make_dwd.ciss_r_serstation_warehouse station_r_warehouse
on station_r_warehouse.dt = '20210101' and station_r_warehouse.warehouse_code = warehouse.code
-- 关联服务网点表
left join one_make_dwd.ciss_base_servicestation station
on station.dt = '20210101' and station.id = station_r_warehouse.service_station_id;
物流维度
建表
-- 物流维度表(和服务属性表类似)
create external table if not exists one_make_dws.dim_logistics(
prop_name string comment '字典名称'
, type_id string comment '属性id'
, type_name string comment '属性名称'
)comment '物流维度表'
partitioned by (dt string)
stored as orc
location '/data/dw/dws/one_make/dim_logistics';
加载
insert overwrite table one_make_dws.dim_logistics partition(dt = '20210101')
select
dict_t.dicttypename as prop_name
, dict_e.dictid as type_id
, dict_e.dictname as type_name
from one_make_dwd.eos_dict_type dict_t
inner join one_make_dwd.eos_dict_entry dict_e
on dict_t.dt = '20210101'
and dict_e.dt = '20210101'
and dict_t.dicttypeid = dict_e.dicttypeid
and dict_t.dicttypename in (
'物流公司'
, '物流类型'
)
order by dict_t.dicttypename, dict_e.dictid;
使用如下写法会好一些
insert overwrite table one_make_dws.dim_logistics partition (dt = '20210101')
select dict_t.dicttypename as prop_name
, dict_e.dictid as type_id
, dict_e.dictname as type_name
from one_make_dwd.eos_dict_type dict_t
inner join one_make_dwd.eos_dict_entry dict_e on dict_t.dt = '20210101'
and dict_e.dt = '20210101'
and dict_t.dicttypeid = dict_e.dicttypeid -- 通过状态字符串进行关联
and dict_t.dicttypename in ('物流公司', '物流类型') -- 通过和物流相关的字样进行过滤
order by prop_name, type_id;
小结**
Exception in thread "main" org.apache.spark.sql.AnalysisException: Detected implicit cartesian product for INNER join between logical plans.Use the CROSS JOIN syntax to allow cartesian products between these relations
spark.sql.crossJoin.enabled true
Error: org.apache.spark.sql.AnalysisException: org.apache.hadoop.hive.ql.metadata.HiveException: Unable to move source hdfs://hadoop.bigdata.cn:9000/data/dw/dws/one_make/dim_warehouse/.hive-staging_hive_2020-12-23_04-26-01_363_5663538019799519260-16/-ext-10000/part-00000-63069107-6405-4e31-a55a-6bdeefcd7d9b-c000 to destination hdfs://hadoop.bigdata.cn:9000/data/dw/dws/one_make/dim_warehouse/dt=20210101/part-00000-63069107-6405-4e31-a55a-6bdeefcd7d9b-c000; (state=,code=0)