Ent(D)的值越小,则D的纯度越高
决策树是通过不断地对属性进行划分,最终形成的树状结构,叶节点为决策结果。决策树训练过程中需要寻找最优划分属性,可以通过信息增益、增益率等指标进行划分。而预剪枝是在决策树生成过程中进行的优化,可能导致欠拟合,后剪枝需要得到一颗完整决策树后再进行处理,消耗的资源更多。连续值及缺失值也可以用于决策树生成。多变量决策树的生成需要线性分类器的辅助
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。