你是否也有这样的桌面?为了方便找材料,全部放到了桌面,最后结果就是“用起一时爽,找起火葬场”。
(图片来源于网络)
你是否也是盘即个人电脑磁使再怎么不够用,也舍不得删除几年前做的运维方案、架构方案、设计方案文档?最后即使文档都保存了,存云盘了,到用的时候依旧发现找不到,找的也不是想要的。
|大模型知识库来袭
现在不用再担心了找不到材料文档了,GitHub开源了一款可离线,支持检索增强生成(RAG)大模型的知识库项目。虽然开源时间不长,但是势头很猛,已经斩获25K Star。具备以下特点:
项目利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案;项目支持的开源 LLM 与 Embedding 模型,本项目可实现全部使用开源模型离线私有部署。与此同时,本项目也支持 OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入;项目方案采用Apache License,可以免费商用,无需付费。 |
---|
总结下重点就是:
重要的事情说三遍
项目名称:Langchain-Chatchat
项目地址:https://github.com/chatchat-space/Langchain-Chatchat
📺 原理介绍视频(点击可看视频)
从文档处理角度来看,实现流程如下:
|大模型知识库来袭
一行代码搞定,但是建议网速不好的同学不要尝试
docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7
# 首先,确信你的机器安装了 Python 3.8 - 3.10 版本
$ python --version
Python 3.8.13
# 如果低于这个版本,可使用conda安装环境
$ conda create -p /your_path/env_name python=3.8
# 激活环境
$ source activate /your_path/env_name
# 或,conda安装,不指定路径, 注意以下,都将/your_path/env_name替换为env_name
$ conda create -n env_name python=3.8
$ conda activate env_name # Activate the environment
# 更新py库
$ pip3 install --upgrade pip
# 关闭环境
$ source deactivate /your_path/env_name
# 删除环境
$ conda env remove -p /your_path/env_name
接着,开始安装项目的依赖
# 拉取仓库
$ git clone --recursive https://github.com/chatchat-space/Langchain-Chatchat.git
# 进入目录
$ cd Langchain-Chatchat
# 安装全部依赖
$ pip install -r requirements.txt
# 默认依赖包括基本运行环境(FAISS向量库)。以下是可选依赖:
- 如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。
- 如果要开启 OCR GPU 加速,请安装 rapidocr_paddle[gpu]
- 如果要使用在线 API 模型,请安装对用的 SDK
此外,为方便用户 API 与 webui 分离运行,可单独根据运行需求安装依赖包。
$ pip install -r requirements_api.txt
# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。
$ pip install -r requirements_webui.txt
如需在本地或离线环境下运行本项目,需要首先将项目所需的模型下载至本地,通常开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。
以本项目中默认使用的 LLM 模型 THUDM/ChatGLM3-6B 与 Embedding 模型 BAAI/bge-large-zh 为例:
下载模型需要先安装 Git LFS ,然后运行
$ git lfs install
$ git clone https://huggingface.co/THUDM/chatglm3-6b
$ git clone https://huggingface.co/BAAI/bge-large-zh
$ python copy_config_example.py
$ python init_database.py --recreate-vs
4. 一键启动
按照以下命令启动项目
$ python startup.py -a
最轻模式本地部署方案
该模式的配置方式与常规模式相同,但无需安装 torch 等重依赖,通过在线API实现 LLM 和 Ebeddings 相关功能,适合没有显卡的电脑使用。
$ pip install -r requirements_lite.txt
$ python startup.py -a --lite
Demo示例