前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >腾讯云数据库2篇论文入选行业顶会SIGMOD,技术创新获权威认可

腾讯云数据库2篇论文入选行业顶会SIGMOD,技术创新获权威认可

作者头像
腾讯云数据库 TencentDB
发布2024-06-16 15:02:54
2520
发布2024-06-16 15:02:54
举报
文章被收录于专栏:腾讯云数据库(TencentDB)
6月13日消息,腾讯云数据库TDSQL和中国人民大学合作的2篇论文成功入选行业优质会议SIGMOD,被SIGMOD2024Research Full Paper(研究类长文)收录。

SIGMOD(Special Interest Group on Management Of Data)作为数据库领域的“风向标”,拥有40余年发展历史,每年为数据库领域提供大量高质量的研究论文和研究成果,具有重要的学术价值和行业引导意义,与VLDB、ICDE并称数据库三大优质会议。

本次收录的研究成果中,同态压缩理论和SALI学习索引框架均属于业界初次提出,表明腾讯云数据库在存储、压缩以及学习索引等方面的前沿创新获得国际保障认可。

面对现代社会数据量的爆发式增长,行业普遍使用数据压缩来减少存储空间和提升传输效率。

但目前,多数压缩方案专注于只读文本处理任务,涉及文本修改操作必须将文本进行解压后再执行,这会对数据处理的性能和存储空间带来负面影响。

在腾讯云和人大合作入选SIGMOD会议的论文《Homomorphic Compression: Making Text Processing on Compression Unlimited》中,研究团队创新性提出了同态压缩理论,并在此基础上开发了有效文本数据管理引擎HOCO。HOCO引擎结合了三种代表性压缩方案,通过数据结构和算法设计实现对不同数据集语法规则的解析,实现了在压缩文本上直接进行多种处理任务。

实验表明,在不影响压缩效果的情况下, HOCO可以实现9.18倍的吞吐量提升,文本分析任务的延迟缩短7.16倍。

另一篇入选论文《SALI: A Scalable Adaptive Learned Index based on Probability Models》提出了基于概率模型的可扩展自适应学习索引框架。

在数据库中,索引是提高数据库查询性能的重要方式。为了提高索引的性能和效率,业内引进了学习索引,通过学习模型来预测数据存储位置,进一步提高查找效率。但传统学习索引存在技术局限,一旦数据集发生频繁查询更新等工作负载变化,学习索引也会频繁调整,多线程高并发情况下会面临阻塞。SALI 通过概率模型感知工作负载的变化,使学习索引可动态“进化”局部结构以适应新的负载。此方法在尽可能减少结构变化对性能的影响的同时,大幅降低线程间阻塞问题,从而实现高可扩展性、提有效率并增强学习索引的鲁棒性。

实验数据显示,SALI在64个线程下提高了2.04倍的插入吞吐量。

作为国产数据库行业的开拓者,腾讯云在数据库领域已深耕十余年,服务超过50万客户。而中国人民大学作为数据库研究的摇篮,为数据库技术在中国的持续发展奠定了坚实基础。2020年,腾讯与中国人民大学共同建立中国人民大学-腾讯协同创新实验室,聚焦数据库前沿技术探索和突破。据悉,合作至今,双方在科研方面研发超过10项前沿技术原型系统、申请数十项专利、多篇论文入选SIGMOD、VLDB、ICDE、TKDE等国际顶会顶刊。未来,腾讯将持续发挥其多年的技术研发创新成果和产业应用经验,联合人大一起推动国产数据库的学术进步和技术成果转化。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-06-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 腾讯云数据库 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档