近日,中科大、厦大、港中文等高校联合推出多模态大模型视频分析综合评估基准Video-MME,全面评估多模态大模型的综合视频理解能力,填补了这一领域的空白。Gemini 1.5 Pro在这份榜单中遥遥领先,证明其在视频理解领域的霸主地位。Video-MME一经推出,更是被谷歌首席科学家Jeff Dean连续转发了三次!目前已有近30万的浏览量,热度很高。
GPT-4o的伟大已无需多言,而谷歌的Gemini 1.5 Pro作为挑战者,其标榜的视频推理能力终于在全新的、更复杂的多模态基准Video-MME上首次得到了验证,并全面超越了GPT-4o!同时,各大公司以及研究机构,例如NVIDIA、ByteDance等模型也加入了混战:
榜单一经放出,Jeff Dean也在第一时间进行了转发表示称赞,共连续转发了三次。
在先前的研究中,缺少可以全面评估大模型视频推理能力的基准。而在现实世界中,处理视频能力至关重要。为了填补这一空白,来自中科大、厦大,港中文等六大高校的研究者联合推出世界上首个多模态大模型视频分析综合评估基准Video-MME。
该基准由全人工标注,具有区别于现有数据集显著的特点。在以下的例子中,准确回答该问题需要同时从视觉、字幕以及音频中同时获取信息,有效信息直接横跨30分钟的间隔:
Video-MME具有以下显著特点:
文章选取了多种代表性的开源视频多模态大模型,包括ST-LLM、VideoChat2-Mistral、Chat-UniVi-V1.5、LLaVA-NeXT-Video和VILA-1.5,以及闭源模型Gemini和GPT-4V/o 。同时,基于图片的多模态大模型包括Qwen-VL-Chat、Qwen-VL-Max和InternVL-Chat-V1.5。
在商业模型中,Gemini 1.5 Pro在视频理解方面表现突出,在加以字幕辅助的情况下以81.3%的准确率领先,并在与GPT-4V和GPT-o的对比中分别超出18%和4.1%。尽管随着视频时长增加,其表现略有下降,但在长视频上的表现(加字幕)优于所有开源模型在短视频上的表现。同时,Gemini 1.5 Pro还支持音频模态的输入,模态支持的更广。而在开源模型中,来自NVIDIA的VILA-1.5以59.4%的准确率表现最佳。然而,相比Gemini 1.5 Pro,VILA-1.5在计数问题、动作识别和时间感知方面仍然存在显著差距。
同时,随着视频时长的增加,所有模型的表现均呈现明显的下降趋势,这也说明面对更长的上下文记忆以及更为复杂的任务时模型还有很大的提升空间。此外,实验还揭示了字幕和音频信息能显著增强视频理解能力,尤其是对于长视频的理解。
在三十种不同类型的视频上,Gemini 1.5 Pro展现出不同的性能。例如,有的任务对字幕和语音的依赖程度更高,如Basketball的长视频,加上字幕和语音能够显著提升性能。详细的实验结果请参照论文原文。
综合实验结果可以看出,当前的多模态大模型在视频理解,尤其是长视频理解方向仍然有很长进步空间,一方面是要提升模型的多模态长上下文理解能力,Gemini 1.5 Pro最高支持百万长度的上下文窗口,这是其表现优异的依仗,另一方面也亟需构建相应的高质量长视频理解数据集,这方面当下仍处于空白。
最新 AI 进展报道