前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >实战 | 基于OpenCV实现魔方颜色识别与色块排序

实战 | 基于OpenCV实现魔方颜色识别与色块排序

作者头像
Color Space
发布2024-06-17 18:01:24
3760
发布2024-06-17 18:01:24
举报
文章被收录于专栏:OpenCV与AI深度学习

视觉/图像重磅干货,第一时间送达!

检测需求

为了做自动魔方识别与复原项目,需要用图像处理的方法识别魔方每个色块的位置与颜色。相机拍摄的魔方单面图像如下:

实现步骤

本文主要使用OpenCV来实现魔方颜色识别与色块位置排序。

【1】颜色识别。设定每个色块在HSV颜色空间的范围来判断和提取颜色。

代码语言:javascript
复制
image = cv2.imread('1.png')
original = image.copy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
mask = np.zeros(image.shape, dtype=np.uint8)

colors = {
    'gray': ([76, 0, 41], [179, 255, 70]),        # Gray
    'blue': ([69, 120, 100], [179, 255, 255]),    # Blue
    'yellow': ([21, 110, 117], [45, 255, 255]),   # Yellow
    'orange': ([0, 110, 125], [17, 255, 255])     # Orange
    }

【2】提取色块掩码。在步骤【1】的基础上添加形态学处理,然后通过或操作

代码语言:javascript
复制
(cv2.bitwise_or)将所有色块区域提取出来。
代码语言:javascript
复制
# Color threshold to find the squares
open_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7,7))
close_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
for color, (lower, upper) in colors.items():
    lower = np.array(lower, dtype=np.uint8)
    upper = np.array(upper, dtype=np.uint8)
    color_mask = cv2.inRange(image, lower, upper)
    color_mask = cv2.morphologyEx(color_mask, cv2.MORPH_OPEN, open_kernel, iterations=1)
    color_mask = cv2.morphologyEx(color_mask, cv2.MORPH_CLOSE, close_kernel, iterations=5)

    color_mask = cv2.merge([color_mask, color_mask, color_mask])
    mask = cv2.bitwise_or(mask, color_mask)
代码语言:javascript
复制

【3】色块排序。排序使用imutils包的contours模块实现。

代码语言:javascript
复制
from imutils import contours
代码语言:javascript
复制
    先做一次从上到下排序,再做一次从左到右排序即可:
代码语言:javascript
复制
gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
cnts = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
# Sort all contours from top-to-bottom or bottom-to-top
(cnts, _) = contours.sort_contours(cnts, method="top-to-bottom")

# Take each row of 3 and sort from left-to-right or right-to-left
cube_rows = []
row = []
for (i, c) in enumerate(cnts, 1):
    row.append(c)
    if i % 3 == 0:  
        (cnts, _) = contours.sort_contours(row, method="left-to-right")
        cube_rows.append(cnts)
        row = []

# Draw text
number = 0
for row in cube_rows:
    for c in row:
        x,y,w,h = cv2.boundingRect(c)
        cv2.rectangle(original, (x, y), (x + w, y + h), (36,255,12), 2)

        cv2.putText(original, "#{}".format(number + 1), (x,y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,255), 2)
        number += 1
代码语言:javascript
复制
代码语言:javascript
复制
代码语言:javascript
复制
    当然,还可以从下到上,从右向左排序。只需要设置下面的method即可:
代码语言:javascript
复制
(cnts, _) = contours.sort_contours(cnts, method="top-to-bottom")
(cnts, _) = contours.sort_contours(row, method="left-to-right")
代码语言:javascript
复制
代码语言:javascript
复制
代码语言:javascript
复制
代码语言:javascript
复制
代码语言:javascript
复制
    【4】如何获取HSV范围。可以使用下面代码,通过滑动条动态调整的方法获取:
代码语言:javascript
复制
import cv2
import numpy as np

def nothing(x):
    pass

# Load image
image = cv2.imread('1.jpg')

# Create a window
cv2.namedWindow('image')

# Create trackbars for color change
# Hue is from 0-179 for Opencv
cv2.createTrackbar('HMin', 'image', 0, 179, nothing)
cv2.createTrackbar('SMin', 'image', 0, 255, nothing)
cv2.createTrackbar('VMin', 'image', 0, 255, nothing)
cv2.createTrackbar('HMax', 'image', 0, 179, nothing)
cv2.createTrackbar('SMax', 'image', 0, 255, nothing)
cv2.createTrackbar('VMax', 'image', 0, 255, nothing)

# Set default value for Max HSV trackbars
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)

# Initialize HSV min/max values
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0

while(1):
    # Get current positions of all trackbars
    hMin = cv2.getTrackbarPos('HMin', 'image')
    sMin = cv2.getTrackbarPos('SMin', 'image')
    vMin = cv2.getTrackbarPos('VMin', 'image')
    hMax = cv2.getTrackbarPos('HMax', 'image')
    sMax = cv2.getTrackbarPos('SMax', 'image')
    vMax = cv2.getTrackbarPos('VMax', 'image')

    # Set minimum and maximum HSV values to display
    lower = np.array([hMin, sMin, vMin])
    upper = np.array([hMax, sMax, vMax])

    # Convert to HSV format and color threshold
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    mask = cv2.inRange(hsv, lower, upper)
    result = cv2.bitwise_and(image, image, mask=mask)

    # Print if there is a change in HSV value
    if((phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
        print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
        phMin = hMin
        psMin = sMin
        pvMin = vMin
        phMax = hMax
        psMax = sMax
        pvMax = vMax

    # Display result image
    cv2.imshow('image', result)
    if cv2.waitKey(10) & 0xFF == ord('q'):
        break

cv2.destroyAllWindows()
代码语言:javascript
复制
代码语言:javascript
复制

—THE END—

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-06-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 OpenCV与AI深度学习 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • —THE END—
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档