前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >pandas之如何制作全国各地xxx系列

pandas之如何制作全国各地xxx系列

作者头像
用户11172986
发布2024-06-20 18:04:36
1000
发布2024-06-20 18:04:36
举报
文章被收录于专栏:气python风雨

前言

微博刷到一张营销号瞎整的全国各地压岁钱分布图 定睛一看广东省竟然高达五十元,这当然是假的啦 我们都是五块十块,你直接给翻了数量级 吓得笔者赶紧拿起键盘写一个pandas简易教程

随机的数据生成

In [7]:

代码语言:javascript
复制
代码语言:javascript
复制
import pandas as pd
import numpy as np

# 创建一个示例的DataFrame
data = {'A': [1, 2, 3, 4, 5],
        'B': [6, 7, 8, 9, 10]}
df = pd.DataFrame(data)

# 生成随机数列
random_nums = np.random.rand(len(df))

# 将随机数列添加为新的列
df['Random'] = random_nums

# 打印结果
print(df)
代码语言:javascript
复制
代码语言:javascript
复制
   A   B    Random
0  1   6  0.679361
1  2   7  0.475995
2  3   8  0.729500
3  4   9  0.972659
4  5  10  0.523726

实际应用

In [13]:

代码语言:javascript
复制
代码语言:javascript
复制
## 读取随机生成的压岁钱数据
import pandas as pd
import geopandas as gpd

# 读取shp文件
shp = gpd.read_file('/home/mw/input/china1656/china_map/china_map/China_Province_2022.shp')
random_nums = 100*np.random.rand(len(shp))
# 将随机数列添加为新的列
shp['Random'] = random_nums
shp
代码语言:javascript
复制

Out[13]:

省级码

省类型

ENG_NAME

VAR_NAME

FIRST_GID

FIRST_TYPE

year

geometry

Random

0

北京市

110000

直辖市

Beijing

Běi Jīng

110000

Municipality

2022

POLYGON ((117.38335 40.22647, 117.38557 40.224...

93.502211

1

天津市

120000

直辖市

Tianjin

Tiān Jīn

120000

Municipality

2022

POLYGON ((117.56937 40.19153, 117.56744 40.189...

79.003211

2

河北省

130000

Hebei

Hé Běi

130000

Province

2022

MULTIPOLYGON (((118.26945 38.98097, 118.26871 ...

97.344063

3

山西省

140000

Shanxi

Shān Xī

140000

Province

2022

POLYGON ((114.13714 40.73445, 114.13860 40.732...

69.052652

4

内蒙古自治区

150000

自治区

Neimenggu

Nèi Měng Gǔ

150000

Autonomous Region

2022

POLYGON ((121.49813 53.32607, 121.50116 53.321...

51.146289

5

辽宁省

210000

Liaoning

Liáo Níng

210000

Province

2022

MULTIPOLYGON (((121.03521 38.87021, 121.03528 ...

24.687464

6

吉林省

220000

Jilin

Jí Lín

220000

Province

2022

POLYGON ((123.90309 46.29744, 123.90283 46.294...

55.642060

7

黑龙江省

230000

Heilongjiang

Hēi Lóng Jiāng

230000

Province

2022

POLYGON ((123.40249 53.53506, 123.40471 53.535...

68.246176

8

上海市

310000

直辖市

Shanghai

Shàng Hǎi

310000

Municipality

2022

MULTIPOLYGON (((121.87476 31.63516, 121.87542 ...

16.877693

9

浙江省

330000

Zhejiang

Zhè Jiāng

330000

Province

2022

MULTIPOLYGON (((120.47933 27.15321, 120.48163 ...

93.926350

10

安徽省

340000

Anhui

ān Huī

340000

Province

2022

POLYGON ((116.42485 34.65234, 116.43225 34.642...

0.832999

11

福建省

350000

Fujian

Fú Jiàn

350000

Province

2022

MULTIPOLYGON (((117.29228 23.59563, 117.29206 ...

95.358016

12

江西省

360000

Jiangxi

Jiāng Xī

360000

Province

2022

POLYGON ((116.68416 30.07160, 116.68576 30.070...

1.049879

13

山东省

370000

Shandong

Shān Dōng

370000

Province

2022

MULTIPOLYGON (((119.92414 35.62384, 119.92294 ...

82.199015

14

河南省

410000

Henan

Hé Nán

410000

Province

2022

MULTIPOLYGON (((111.02770 33.17911, 111.02767 ...

14.491251

15

湖北省

420000

Hubei

Hú Běi

420000

Province

2022

MULTIPOLYGON (((113.12740 29.43223, 113.11645 ...

0.626169

16

湖南省

430000

Hunan

Hú Nán

430000

Province

2022

MULTIPOLYGON (((109.47771 26.84005, 109.47793 ...

27.848135

17

广东省

440000

Guangdong

Guǎng Dōng

440000

Province

2022

MULTIPOLYGON (((110.59023 20.37852, 110.59232 ...

54.834726

18

广西壮族自治区

450000

自治区

Guangxi

Guǎng Xī

450000

Autonomous Region

2022

MULTIPOLYGON (((109.20674 20.91898, 109.20686 ...

18.049076

19

海南省

460000

Hainan

Hǎi Nán

460000

Province

2022

MULTIPOLYGON (((112.04381 3.83812, 112.01370 3...

14.530838

20

重庆市

500000

直辖市

Chongqing

Chóng Qìng

500000

Municipality

2022

POLYGON ((109.57960 31.72849, 109.58644 31.725...

24.778711

21

四川省

510000

Sichuan

Sì Chuān

510000

Province

2022

POLYGON ((102.95840 34.27996, 102.95933 34.270...

6.216893

22

贵州省

520000

Guizhou

Guì Zhōu

520000

Province

2022

MULTIPOLYGON (((105.09467 24.92520, 105.09458 ...

15.550355

23

云南省

530000

Yunnan

Yún Nán

530000

Province

2022

POLYGON ((99.11276 29.21149, 99.11737 29.20723...

67.450696

24

西藏自治区

540000

自治区

Xizang

Xī Zàng

540000

Autonomous Region

2022

POLYGON ((88.38821 36.47854, 88.38945 36.47845...

73.610347

25

陕西省

610000

Shaanxi

Shǎn Xī

610000

Province

2022

POLYGON ((108.13454 36.57919, 108.13418 36.580...

14.560607

26

甘肃省

620000

Gansu

Gān Sù

620000

Province

2022

POLYGON ((97.19051 42.76287, 97.23601 42.67222...

74.807518

27

青海省

630000

Qinghai

Qīng Hǎi

630000

Province

2022

POLYGON ((100.91694 38.17344, 100.91780 38.173...

80.159599

28

宁夏回族自治区

640000

自治区

Ningxia

Níng Xià Huí Zú

640000

Autonomous Region

2022

MULTIPOLYGON (((106.06218 35.43728, 106.06239 ...

10.338105

29

新疆维吾尔自治区

650000

自治区

Xinjiang

Xīn Jiāng

650000

Autonomous Region

2022

POLYGON ((87.79720 49.18060, 87.81916 49.17268...

55.175422

30

台湾省

710000

Taiwan

Tái Wān

710000

Province

2022

MULTIPOLYGON (((123.69793 25.92930, 123.69726 ...

53.143895

31

香港特别行政区

810000

特别行政区

HongKong

Hong Kong

810000

Special District

2022

MULTIPOLYGON (((114.22665 22.54375, 114.22661 ...

96.667167

32

澳门特别行政区

820000

特别行政区

Aomen

ào Mén

820000

Special District

2022

MULTIPOLYGON (((113.55346 22.21547, 113.55374 ...

39.390123

33

江苏省

320000

Jiangsu

Jiāng Sū

320000

Province

2022

MULTIPOLYGON (((121.56617 32.22928, 121.56693 ...

0.658625

修改某行某列随机值

In [29]:

代码语言:javascript
复制
代码语言:javascript
复制
shp.loc[shp['省'] == '广东省', 'Random'] = 10
代码语言:javascript
复制

geopandas版绘图

In [30]:

代码语言:javascript
复制
代码语言:javascript
复制
import matplotlib.pyplot as plt

# 画布设置
plt.figure(figsize=(20, 12))

# 绘制各省份的随机值分布图
shp.plot(column='Random', cmap='OrRd', linewidth=0.8, edgecolor='0.8', legend=True)

# 在每个地方标上数值
for idx, row in shp.iterrows():
    plt.text(row.geometry.centroid.x, row.geometry.centroid.y, round(row['Random'], 2), ha='center', fontsize=8)

# 设置标题
plt.title('中国各省份随机值分布图', fontweight='bold', fontsize=15)

# 显示图片
plt.show()
代码语言:javascript
复制
代码语言:javascript
复制
<Figure size 1440x864 with 0 Axes>

cartopy版绘图

In [31]:

代码语言:javascript
复制
代码语言:javascript
复制
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature

# 创建地图投影
fig = plt.figure(figsize=(20, 12))
ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())

# 绘制各省份的边界和随机值填充色
for idx, row in shp.iterrows():
    ax.add_geometries([row['geometry']], ccrs.PlateCarree(), facecolor=plt.cm.OrRd(row['Random']/100), edgecolor='black', linewidth=0.8)

# 在每个地方标上数值
for idx, row in shp.iterrows():
    ax.text(row.geometry.centroid.x, row.geometry.centroid.y, round(row['Random'], 2), fontsize=8, ha='center', transform=ccrs.PlateCarree())

# 添加海岸线、国家边界等地图要素
ax.add_feature(cfeature.COASTLINE)

# 设置地图范围
ax.set_extent([70, 140, 15, 55])

# 设置标题
plt.title('中国各省份随机值分布图', fontweight='bold', fontsize=15)
# 显示地图
plt.show()
代码语言:javascript
复制

虽说是临时之作,但数据生成,修改数值,数据绘图都包揽了 geopandas也是pandas

点击链接可在线运行程序

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-01-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 气python风雨 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 随机的数据生成
  • 实际应用
  • 修改某行某列随机值
  • geopandas版绘图
  • cartopy版绘图
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档