前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >C++一分钟之-互斥锁与条件变量

C++一分钟之-互斥锁与条件变量

作者头像
Jimaks
发布2024-06-27 09:16:18
1160
发布2024-06-27 09:16:18
举报
文章被收录于专栏:大数据大数据

在C++并发编程中,同步机制是保证数据一致性与线程安全的重要工具。std::mutex(互斥锁)提供了基本的互斥访问保护,而std::condition_variable(条件变量)则用于线程间的精确协调,让线程在满足特定条件时才继续执行。本文将深入浅出地讲解这两者的使用、常见问题、易错点以及如何避免这些问题,并通过实例代码加深理解。

一、互斥锁(std::mutex)

互斥锁是实现线程间资源独占访问的基础手段。一旦一个线程获得了锁,其他试图获取同一锁的线程将会被阻塞,直到锁被释放。

基本用法

代码语言:javascript
复制
std::mutex mtx;
// 加锁
mtx.lock();
// 执行临界区代码
// ...
// 解锁
mtx.unlock();

易错点与避免策略

  1. 忘记解锁:使用std::lock_guardstd::unique_lock自动管理锁的生命周期,确保即使发生异常也能解锁。
  2. 死锁:避免在持有锁的情况下调用可能阻塞的函数,或按相同的顺序获取多个锁。

二、条件变量(std::condition_variable)

条件变量用于线程间同步,允许一个线程等待(挂起)直到另一个线程通知某个条件为真。

基本用法

代码语言:javascript
复制
std::condition_variable cv;
std::mutex mtx;

void waitingFunction() {
    std::unique_lock<std::mutex> lock(mtx);
    cv.wait(lock, []{return conditionToWaitFor;}); // 条件满足前挂起
    // 条件满足后执行的代码
}

void notifyingFunction() {
    // 修改状态使得conditionToWaitFor为真
    std::lock_guard<std::mutex> lock(mtx);
    cv.notify_one(); // 唤醒一个等待的线程
}

常见问题与避免策略

  1. 无条件唤醒:不要在没有改变条件的情况下调用notify_*函数,这可能导致不必要的线程唤醒和重新检查条件。
  2. 虚假唤醒:即使没有调用notify_*,等待的线程也可能被唤醒。因此,总是使用条件来检查是否真正满足继续执行的条件。
  3. 死锁:确保在调用wait之前已经获得了锁,并且在wait之后立即检查条件,避免在持有锁的情况下执行耗时操作。

三、综合示例:生产者-消费者模型

代码语言:javascript
复制
#include <iostream>
#include <thread>
#include <queue>
#include <mutex>
#include <condition_variable>

std::queue<int> producedItems;
std::mutex mtx;
std::condition_variable condVar;

bool doneProducing = false;

void producer(int n) {
    for (int i = 0; i < n; ++i) {
        std::this_thread::sleep_for(std::chrono::seconds(1)); // 模拟生产时间
        std::lock_guard<std::mutex> lock(mtx);
        producedItems.push(i);
        condVar.notify_one(); // 通知消费者
        if (i == n - 1) doneProducing = true;
    }
}

void consumer() {
    while (true) {
        std::unique_lock<std::mutex> lock(mtx);
        condVar.wait(lock, []{return !producedItems.empty() || doneProducing;});
        if (!producedItems.empty()) {
            int item = producedItems.front();
            producedItems.pop();
            std::cout << "Consumed: " << item << std::endl;
        } else if (doneProducing) {
            break;
        }
    }
}

int main() {
    std::thread producerThread(producer, 10);
    std::thread consumerThread(consumer);

    producerThread.join();
    consumerThread.join();

    return 0;
}

四、总结

互斥锁和条件变量是构建复杂并发系统不可或缺的组件。正确使用它们,可以有效解决线程间的同步问题,避免数据竞争和死锁。实践中,应注重细节,如使用RAII模式管理锁的生命周期、仔细设计条件判断逻辑,以及避免无意义的线程唤醒。通过上述示例和策略的学习,希望你能更加自信地在C++项目中应用这些并发工具,提升程序的并发性能和可靠性。随着经验的积累,逐步探索更高级的并发模式和库,如C++20中的std::latchstd::barrier,将使你的并发编程技能更加全面和高效。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-06-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、互斥锁(std::mutex)
    • 基本用法
      • 易错点与避免策略
      • 二、条件变量(std::condition_variable)
        • 基本用法
          • 常见问题与避免策略
          • 三、综合示例:生产者-消费者模型
          • 四、总结
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档