前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >小红书&中科大 | LLM在笔记推荐中的首次落地

小红书&中科大 | LLM在笔记推荐中的首次落地

作者头像
Houye
发布2024-06-27 14:35:11
740
发布2024-06-27 14:35:11
举报
文章被收录于专栏:图与推荐图与推荐

https://arxiv.org/pdf/2403.01744v2

简介

本文来自小红书和中科大, 首次尝试了将LLM应用到笔记推荐(Note Recommendation)中. 更具体的,

  • 本文在推荐链路(召回->粗排->精排->重排)的召回环节, 新上(或替换了)一路现有的I2I(Item2Item, 这里item其实是Note)召回.
  • 模型核心点是: 如何考虑用户共点击行为和属性/标签, 对LLM模型LLama2进行微调, 使之可以适配推荐场景的需求?
  • 在线A/B测试的提升也非常显著. 对比之前的SentenceBERT , LLMNote的ctr提升高达16.20%. 但这应该是单路召回的对比提升. 实际大盘应该关注在 笔记的评论量(number of comments)和每周创作者数(weekly number of publishers), 前者和I2I的提升更相关, 后面的提升更间接.

下面是个简单的流程示例

  • 底层设计和使用了多种prompt. 比如Note Emb 和 Output Guidance, 分别用于得到note的embedding和相关属性标签.
  • 中间是微调好的NoteLLM
  • 上层是如何进行服务的, 包括标签/属性生产, 然后从候选的note pool筛选出相关的note. 这里是基于Singapore的Note, 召回了另1个与Singapore相关的Note(红色箭头部分).

模型

下面是更具体的训练流程, 主要有3块: prompt的构建, 以及2种训练任务

Prompt结构

对于第i篇笔记, 其主要由4部分组成, 分别代表标题(title), 标签(hashtag), 类目(category)和内容(content).

相应的, prompt的结构如下:

这里[EMB]代表经过LLM生成的笔记的embedding, 用于后续的对比学习任务.

类目生成的prompt

标签主题生成的prompt

如上图, 主要就2步:

(1) 共现统计来构建相似笔记对. 这里思路比较常见, 就是统计2个笔记被哪些用户共同点击过, 次数越多, 笔记越像.

(2) 正负样本对比loss. 正样本相似度大于负样本.

标签/类目的预测任务(Collaborative Supervised Fine-Tuning)

对于这部分, 文中介绍的较为简洁, 主要是1个预测公式和loss计算.

最后, 把2种loss做了个加权融合(调控), 进行联合训练

实验

效率实验都比base要好一些, 这里简单罗列一下. 召回离线评估指标选取的是经典的Recall系列.

后面的参数实验也调整了, 但是看起无明显规律, 且的时候效果也还不错...

作者也找了一些case去看, 基本符合预期.

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-06-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 图神经网络与推荐系统 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 简介
  • 模型
    • Prompt结构
      • 标签/类目的预测任务(Collaborative Supervised Fine-Tuning)
      • 实验
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档