前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >单细胞学习小组003期 Day4

单细胞学习小组003期 Day4

原创
作者头像
用户11153857
修改2024-07-03 07:57:24
1230
修改2024-07-03 07:57:24
举报
文章被收录于专栏:花花单细胞学习小组003

This section is the further study of single cell data analysis following the previous BIC.

This is the homework of Day 1.

1. Install R packages in batches

1. Set up the mirror, this is an alternative option

代码语言:R
复制
options("repos"="https://mirrors.ustc.edu.cn/CRAN/")

if(!require("BiocManager")) install.packages("BiocManager",update = F,ask = F)

options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")

2. Define a vector for packages from cran

代码语言:R
复制
cran_packages <- c('tidyverse',
                   'msigdbr',
                   'patchwork',
                   'SeuratObject',
                   'Seurat'
) 

3. Define a vector for packages from bioconductor

代码语言:R
复制
Biocductor_packages <- c('sva',
                         'monocle',
                         'GOplot',
                         'GSVA',
                         'plotmo',
                         'regplot',
                         'scRNAseq',
                         'BiocStyle',
                         'celldex',
                         'SingleR',
                         'BiocParallel'
)

4. Batch install packages from cran with a for loop

代码语言:R
复制
for (pkg in cran_packages){
  if (! require(pkg,character.only=T,quietly = T) ) {
    install.packages(pkg,ask = F,update = F)
    require(pkg,character.only=T) 
  }
}

5. Batch install packages from bioconductor with a for loop

代码语言:R
复制
for (pkg in Biocductor_packages){
  if (! require(pkg,character.only=T,quietly = T) ) {
    BiocManager::install(pkg,ask = F,update = F)
    require(pkg,character.only=T) 
  }
}

6. Reload all packages to confirm the staus of installation

代码语言:R
复制
for (pkg in c(Biocductor_packages,cran_packages)){
  require(pkg,character.only=T) 
}

7. Check Seurat version

代码语言:R
复制
packageVersion("Seurat")

2. Find the single cell data you need

1. The applications of single cell RNA-seq

Cell atlas construction

Cell typing, new cell type identification

Oncology, including heteralgenetiy, micro-environment, drug resistance, and stem cell diffrenciation of tumor cell

Neuroscience

Developmental biology

Immunology

https://jieandze1314-1322730577.cos.ap-guangzhou.myqcloud.com/blog/2024-06-17-021758.png

Cited from https://m.umu.com/session/article/3PSv8e9a?fwx=1

2. Public databases

1.Gene Expression Omnibus (GEO) by NIH

https://www.ncbi.nlm.nih.gov/geo/

2.Single Cell Portal by Broad Institute

https://singlecell.broadinstitute.org/single_cell

3.Human Cell Atlas

https://www.humancellatlas.org/

4.Single Cell Expression Atlas by EMBL-EBI

https://www.ebi.ac.uk/gxa/sc/home

5.UCSC Cell Browser by UCSC

https://cells.ucsc.edu/

Various formats, different format corresponds to the different way of reading, we can see this: https://mp.weixin.qq.com/s/W7szy-Kg6G1N1ENHNRjGiw.

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. Install R packages in batches
    • 1. Set up the mirror, this is an alternative option
      • 2. Define a vector for packages from cran
        • 3. Define a vector for packages from bioconductor
          • 4. Batch install packages from cran with a for loop
            • 5. Batch install packages from bioconductor with a for loop
              • 6. Reload all packages to confirm the staus of installation
                • 7. Check Seurat version
                • 2. Find the single cell data you need
                  • 1. The applications of single cell RNA-seq
                    • 2. Public databases
                    领券
                    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档