编译就是把源代码变成目标代码的过程
如果源代码在操作系统上运行:目标代码就是“汇编代码”。再通过汇编和链接的过程形成可执行文件,然后通过加载器加载到操作系统执行。 如果源代码在虚拟机(解释器)上运行:目标代码就是“解释器可以理解的中间形式的代码”,比如字节码(中间代码)IR、AST语法树。
词法分析是将输入的字符串以单词符号的结果进行输出
程序里面的单词叫做Token,Token的类型包括:关键字、标识符、字面量、操作符等
词法分析就是把字符串转换成一个个Token的过程
每一个程序代码,实际上可以通过树这种结构表现出其语法规则。
语法分析阶段把Token串,转换成一个体现语法规则的、树状数据结构,即抽象语法树AST。
AST树反映了程序的语法结构。
语义分析阶段的任务:理解语义,语句要做什么。
比如+号要执行加法、=号要执行赋值、for结构要去实现循环、if结构实现判断。
所以语义阶段要做的内容有:上下文分析(包括引用消解、类型分析与检查等)
引用消解:找到变量所在的作用域,一个变量作用范围属于全局还是局部。
类型识别:比如执行a+3,需要识别出变量a的类型,因为浮点数和整型执行不一样,要执行不同的运算方式。
类型检查:比如int b = a + 3,是否可以进行定义赋值。等号右边的表达式必须返回一个整型的数据、或则能够自动转换成整型的数据,才能够对类型为整型的变量b进行复制。
比如之前的一段C语言代码,经过语义分析后获得的信息(引用消解信息、类型信息),可以在AST上进行标注,形成下面的“带有标注的语法树”,让编译器更好的理解程序的语义。
也会将这些上下文信息存入“符号表”结构中,便于各阶段查询上下文信息。
符号表是有层次的结构:我们只需要逐级向上查找就能找到变量、函数等的信息(作用域、类型等)
接下来就可以 解释执行:实现一门解释型的语言
Tip:编译型语言需要生成目标代码,而解释性语言只需要解释器去执行语义就可以了。
实现AST的解释器:在语法分析后有了程序的抽象语法树,在语义分析后有了“带有标注的AST”和符号表后,就可以深度优先遍历AST,并且一边遍历一边执行结点的语义规则。整个遍历的过程就是执行代码的过程。
举一个解释执行的例子,比如执行下面的语义:
在编译前端完成后(编译器已经理解了词法和语义),编译器可以直接解释执行、或则直接生成目标代码。对于不同架构的CPU,还需要生成不同的汇编代码,如果对每一种汇编代码做优化就很繁琐了。所以我们需要增加一个环节:生成中间代码IR,统一优化后中间代码,再去将中间代码生成目标代码。
中间代码IR的两个用途:解释执行 、代码优化
解释执行:解释型语言,比如Python和Java,生成IR后就能直接执行了
优化代码:比如LLVM等工具;在生成代码后需要做大量的优化工作,而很多优化工作没必要使用汇编代码来做(因为不同CPU体系的汇编语言不同),而可以基于IR用统一的算法来完成,降低编译器适配不同CPU的复杂性。
而采用中间代码来编写优化算法的好处,是可以把大部分的优化算法,写成与具体CPU架构无关的形式,从而大大降低编译器适配不同CPU的工作量。并且,如果采用像LLVM这样的工具,我们还可以让多种语言的前端生成相同的中间代码,这样就可以复用中端和后端的程序了。
目标代码生成,也就是生成虚拟机执行的字节码,或则操作系统执行的汇编代码
代码生成的过程,其实很简单,就是将中间代码IR逐个翻译成想要的汇编的代码
那么目标代码生成阶段的任务就有:
选择合适指令,生成性能最高的代码。 优化寄存器的分配,让频繁访问的变量,比如循环语句中的变量放到寄存器中,寄存器比内存快 在不改变运行结果下,对指令做重排序优化,从而充分运用CPU内部的多个功能部件的并行能力
目标代码生成之后,整个编译过程就完成了
本文参考: