前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >[AI Mem0] 源码解读,带你了解 Mem0 的实现

[AI Mem0] 源码解读,带你了解 Mem0 的实现

原创
作者头像
从零开始学AI
发布2024-07-30 22:20:33
3690
发布2024-07-30 22:20:33
举报
文章被收录于专栏:AI

Mem0 的 CRUD 到底是如何实现的?我们来看下源码。

使用

先来看下,如何使用 Mem0

代码语言:python
代码运行次数:0
复制
import os
os.environ["OPENAI_API_KEY"] = "sk-xxx"

from mem0 import Memory

m = Memory()

# 1. Add: Store a memory from any unstructured text
result = m.add("I am working on improving my tennis skills. Suggest some online courses.", user_id="alice", metadata={"category": "hobbies"})

# Created memory --> 'Improving her tennis skills.' and 'Looking for online suggestions.'

# 2. Update: update the memory
result = m.update(memory_id=<memory_id_1>, data="Likes to play tennis on weekends")

# Updated memory --> 'Likes to play tennis on weekends.' and 'Looking for online suggestions.'

# 3. Search: search related memories
related_memories = m.search(query="What are Alice's hobbies?", user_id="alice")

# Retrieved memory --> 'Likes to play tennis on weekends'

# 4. Get all memories
all_memories = m.get_all()
memory_id = all_memories[0]["id"] # get a memory_id

# All memory items --> 'Likes to play tennis on weekends.' and 'Looking for online suggestions.'

# 5. Get memory history for a particular memory_id
history = m.history(memory_id=<memory_id_1>)

# Logs corresponding to memory_id_1 --> {'prev_value': 'Working on improving tennis skills and interested in online courses for tennis.', 'new_value': 'Likes to play tennis on weekends' }

MemoryBase

MemoryBase 是一个抽象类,定义了一些接口方法

  • get
  • get_all
  • update
  • delete
  • history
代码语言:python
代码运行次数:0
复制
class MemoryBase(ABC):
    @abstractmethod
    def get(self, memory_id):
        """
        Retrieve a memory by ID.

        Args:
            memory_id (str): ID of the memory to retrieve.

        Returns:
            dict: Retrieved memory.
        """
        pass

    @abstractmethod
    def get_all(self):
        """
        List all memories.

        Returns:
            list: List of all memories.
        """
        pass

    @abstractmethod
    def update(self, memory_id, data):
        """
        Update a memory by ID.

        Args:
            memory_id (str): ID of the memory to update.
            data (dict): Data to update the memory with.

        Returns:
            dict: Updated memory.
        """
        pass

    @abstractmethod
    def delete(self, memory_id):
        """
        Delete a memory by ID.

        Args:
            memory_id (str): ID of the memory to delete.
        """
        pass

    @abstractmethod
    def history(self, memory_id):
        """
        Get the history of changes for a memory by ID.

        Args:
            memory_id (str): ID of the memory to get history for.

        Returns:
            list: List of changes for the memory.
        """
        pass

Memory

Memory 实现 MemoryBase 接口

代码语言:python
代码运行次数:0
复制
class Memory(MemoryBase):

init

代码语言:python
代码运行次数:0
复制
    def __init__(self, config: MemoryConfig = MemoryConfig()):
        self.config = config
        self.embedding_model = EmbedderFactory.create(self.config.embedder.provider)
        # Initialize the appropriate vector store based on the configuration
        vector_store_config = self.config.vector_store.config
        if self.config.vector_store.provider == "qdrant":
            self.vector_store = Qdrant(
                host=vector_store_config.host,
                port=vector_store_config.port,
                path=vector_store_config.path,
                url=vector_store_config.url,
                api_key=vector_store_config.api_key,
            )
        else:
            raise ValueError(
                f"Unsupported vector store type: {self.config.vector_store_type}"
            )

        self.llm = LlmFactory.create(self.config.llm.provider, self.config.llm.config)
        self.db = SQLiteManager(self.config.history_db_path)
        self.collection_name = self.config.collection_name
        self.vector_store.create_col(
            name=self.collection_name, vector_size=self.embedding_model.dims
        )
        self.vector_store.create_col(
            name=self.collection_name, vector_size=self.embedding_model.dims
        )
        capture_event("mem0.init", self)

初始化 embedding_model, vector_store(这里只能是 Qdrant), llm, db, collection_name

add

代码语言:python
代码运行次数:0
复制
    def add(
        self,
        data,
        user_id=None,
        agent_id=None,
        run_id=None,
        metadata=None,
        filters=None,
        prompt=None,
    ):
        """
        Create a new memory.

        Args:
            data (str): Data to store in the memory.
            user_id (str, optional): ID of the user creating the memory. Defaults to None.
            agent_id (str, optional): ID of the agent creating the memory. Defaults to None.
            run_id (str, optional): ID of the run creating the memory. Defaults to None.
            metadata (dict, optional): Metadata to store with the memory. Defaults to None.
            filters (dict, optional): Filters to apply to the search. Defaults to None.

        Returns:
            str: ID of the created memory.
        """
  • 将用户 data 发给 llm ,得到 extracted_memories
  • 将用户 data 转成 embeddings
  • vector_store 根据 embeddings search 得到 existing_memories
  • 将新,老 memory 发给 llm 来 merge
  • 调用函数 _create_memory_tool 进行实际操作
    • vector_store insert
    • db add_history

get

代码语言:python
代码运行次数:0
复制
    def get(self, memory_id):
        """
        Retrieve a memory by ID.

        Args:
            memory_id (str): ID of the memory to retrieve.

        Returns:
            dict: Retrieved memory.
        """
  • vector_store 根据 memory_id 去 get

get_all

代码语言:python
代码运行次数:0
复制
    def get_all(self, user_id=None, agent_id=None, run_id=None, limit=100):
        """
        List all memories.

        Returns:
            list: List of all memories.
        """
  • vector_store 根据 collection_name, filters, limit 调用 list 接口

search

代码语言:python
代码运行次数:0
复制
    def search(
        self, query, user_id=None, agent_id=None, run_id=None, limit=100, filters=None
    ):
        """
        Search for memories.

        Args:
            query (str): Query to search for.
            user_id (str, optional): ID of the user to search for. Defaults to None.
            agent_id (str, optional): ID of the agent to search for. Defaults to None.
            run_id (str, optional): ID of the run to search for. Defaults to None.
            limit (int, optional): Limit the number of results. Defaults to 100.
            filters (dict, optional): Filters to apply to the search. Defaults to None.

        Returns:
            list: List of search results.
        """
  • embedding_model 将 query 转 embeddings
  • vector_store 根据 embeddings search

update

代码语言:python
代码运行次数:0
复制
    def update(self, memory_id, data):
        """
        Update a memory by ID.

        Args:
            memory_id (str): ID of the memory to update.
            data (dict): Data to update the memory with.

        Returns:
            dict: Updated memory.
        """
  • 调用 _update_memory_tool
    • existing_memory = self.vector_store.get
    • embeddings = self.embedding_model.embed(data)
    • self.vector_store.update
    • self.db.add_history

delete

代码语言:python
代码运行次数:0
复制
    def delete(self, memory_id):
        """
        Delete a memory by ID.

        Args:
            memory_id (str): ID of the memory to delete.
        """
  • 调用 _delete_memory_tool
    • existing_memory = self.vector_store.get
    • self.vector_store.delete
    • self.db.add_history

delete_all

代码语言:python
代码运行次数:0
复制
    def delete_all(self, user_id=None, agent_id=None, run_id=None):
        """
        Delete all memories.

        Args:
            user_id (str, optional): ID of the user to delete memories for. Defaults to None.
            agent_id (str, optional): ID of the agent to delete memories for. Defaults to None.
            run_id (str, optional): ID of the run to delete memories for. Defaults to None.
        """
  • memories = self.vector_store.list
  • foreach memories
    • _delete_memory_tool

history

代码语言:python
代码运行次数:0
复制
    def history(self, memory_id):
        """
        Get the history of changes for a memory by ID.

        Args:
            memory_id (str): ID of the memory to get history for.

        Returns:
            list: List of changes for the memory.
        """
  • self.db.get_history

reset

代码语言:python
代码运行次数:0
复制
    def reset(self):
        """
        Reset the memory store.
        """
  • self.vector_store.delete_col
  • self.db.reset()

AnonymousTelemetry

SQLiteManager

  • db 用的是 sqlite3
  • 一个记录历史的表
代码语言:sql
复制
CREATE TABLE IF NOT EXISTS history (
    id TEXT PRIMARY KEY,
    memory_id TEXT,
    prev_value TEXT,
    new_value TEXT,
    event TEXT,
    timestamp DATETIME,
    is_deleted INTEGER
)

MemoryClient

代码语言:python
代码运行次数:0
复制
class MemoryClient:
    """Client for interacting with the Mem0 API.

    This class provides methods to create, retrieve, search, and delete memories
    using the Mem0 API.

    Attributes:
        api_key (str): The API key for authenticating with the Mem0 API.
        host (str): The base URL for the Mem0 API.
        client (httpx.Client): The HTTP client used for making API requests.
    """

Embedding

代码语言:python
代码运行次数:0
复制
class EmbeddingBase(ABC):
    @abstractmethod
    def embed(self, text):
        """
        Get the embedding for the given text.

        Args:
            text (str): The text to embed.

        Returns:
            list: The embedding vector.
        """
        pass
  • HuggingFaceEmbedding(model_name="multi-qa-MiniLM-L6-cos-v1")
  • Ollama(model="nomic-embed-text")
  • OpenAI(model="text-embedding-3-small")

LLM

代码语言:python
代码运行次数:0
复制
class LLMBase(ABC):
    def __init__(self, config: Optional[BaseLlmConfig] = None):
        """Initialize a base LLM class

        :param config: LLM configuration option class, defaults to None
        :type config: Optional[BaseLlmConfig], optional
        """
        if config is None:
            self.config = BaseLlmConfig()
        else:
            self.config = config

    @abstractmethod
    def generate_response(self, messages):
        """
        Generate a response based on the given messages.

        Args:
            messages (list): List of message dicts containing 'role' and 'content'.

        Returns:
            str: The generated response.
        """
        pass
  • AWSBedrockLLM(anthropic.claude-3-5-sonnet-20240620-v1:0)
  • GroqLLM(llama3-70b-8192)
  • LiteLLM(gpt-4o)
  • OllamaLLM(llama3)
  • OpenAILLM(gpt-4o)
  • TogetherLLM(mistralai/Mixtral-8x7B-Instruct-v0.1)

VectorStore

代码语言:python
代码运行次数:0
复制
class VectorStoreBase(ABC):
    @abstractmethod
    def create_col(self, name, vector_size, distance):
        """Create a new collection."""
        pass

    @abstractmethod
    def insert(self, name, vectors, payloads=None, ids=None):
        """Insert vectors into a collection."""
        pass

    @abstractmethod
    def search(self, name, query, limit=5, filters=None):
        """Search for similar vectors."""
        pass

    @abstractmethod
    def delete(self, name, vector_id):
        """Delete a vector by ID."""
        pass

    @abstractmethod
    def update(self, name, vector_id, vector=None, payload=None):
        """Update a vector and its payload."""
        pass

    @abstractmethod
    def get(self, name, vector_id):
        """Retrieve a vector by ID."""
        pass

    @abstractmethod
    def list_cols(self):
        """List all collections."""
        pass

    @abstractmethod
    def delete_col(self, name):
        """Delete a collection."""
        pass

    @abstractmethod
    def col_info(self, name):
        """Get information about a collection."""
        pass
  • 只有 Qdrant 一个实现

总结

  • 核心就是 Memory 类,实现了 MemoryBase 接口
  • 通过 embedding_model 来处理文本
  • 通过 vector_store 存储 embedding
  • 通过 llm 处理数据
  • 通过 db 记录 Memory 的历史

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 使用
  • MemoryBase
  • Memory
    • init
      • add
        • get
          • get_all
            • search
              • update
                • delete
                  • delete_all
                    • history
                      • reset
                      • AnonymousTelemetry
                      • SQLiteManager
                      • MemoryClient
                      • Embedding
                      • LLM
                      • VectorStore
                      • 总结
                      领券
                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档