目标:通过微调,帮助模型认清自己身份(赋予的某种功能)
方式:使用XTuner进行微调
微调前(回答比较官方)
InternStudio 平台中,从本地 clone 一个已有 pytorch 2.0.1 的环境(后续均在该环境执行,若为其他环境可作为参考)
# 进入环境后首先 bash
bash
conda create --name personal_assistant --clone=/root/share/conda_envs/internlm-base
如果在其他平台:
conda create --name personal_assistant python=3.10 -y#
激活环境
conda activate personal_assistant
cd ~
# 创建版本文件夹并进入,以跟随本教程
# personal_assistant用于存放本教程所使用的东西
mkdir /root/personal_assistant && cd /root/personal_assistant
mkdir /root/personal_assistant/xtuner019 && cd /root/personal_assistant/xtuner019
拉取 0.1.9 的版本源码
git clone -b v0.1.9 https://github.com/InternLM/xtuner
无法访问github的用户请从 gitee 拉取:
git clone -b v0.1.9 https://gitee.com/Internlm/xtuner
进入源码目录
cd xtuner
从源码安装 XTuner
pip install -e '.[all]'
创建data
文件夹用于存放用于训练的数据集
mkdir /root/personal_assistant/data && cd /root/personal_assistant/data
在data
目录下创建一个json文件personal_assistant.json
作为本次微调所使用的数据集。json中内容可参考下方
其中conversation
表示一次对话的内容,input
为输入,即用户会问的问题,output
为输出,即想要模型回答的答案。
[
{
"conversation": [
{
"input": "请介绍一下你是谁",
"output": "我是绛烨的AI小助手,使用的是上海AI实验室书生·浦语的7B大模型哦"
}
]
},
{
"conversation": [
{
"input": "请介绍一下绛烨的公众号",
"output": "绛烨公众号目前专注于AI绘画、AI大模型及prompt提示词的研究与应用。"
}
]
},
{
"conversation": [
{
"input": "绛烨目前开放的自媒体有哪些",
"output": "绛烨目前开放的自媒体平台有公众号、视频号、抖音、快手、哔哩哔哩等。"
}
]
}
]
下载模型InternLM-chat-7B,
InternStudio 平台的 share
目录下已经为我们准备了全系列的 InternLM
模型,可以使用如下命令复制internlm-chat-7b
:
mkdir -p /root/personal_assistant/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/personal_assistant/model/Shanghai_AI_Laboratory
XTuner 提供多个开箱即用的配置文件,用户可以通过下列命令查看:
xtuner list-cfg
mkdir /root/personal_assistant/config && cd /root/personal_assistant/config
拷贝一个配置文件到当前目录:xtuner copy-cfg ${CONFIG_NAME} ${SAVE_PATH},
在本例中:
xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 .
修改拷贝后的文件internlm_chat_7b_qlora_oasst1_e3_copy.py,修改下述位置:
红框为配置文件中PART 1需要修改的内容
红框为配置文件中PART 3需要修改的内容
# PART 1 中
# 预训练模型存放的位置
pretrained_model_name_or_path = '/root/personal_assistant/model/Shanghai_AI_Laboratory/internlm-chat-7b'
# 微调数据存放的位置
data_path = '/root/personal_assistant/data/personal_assistant.json'
# 训练中最大的文本长度
max_length = 512
# 每一批训练样本的大小
batch_size = 2
# 最大训练轮数
max_epochs = 3
# 验证的频率
evaluation_freq = 90
# 用于评估输出内容的问题(用于评估的问题尽量与数据集的question保持一致)
evaluation_inputs =[ '请介绍一下你自己', '请介绍一下绛烨正在做的事','绛烨目前开放的自媒体有哪些' ]
# PART 3 中
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path))
dataset_map_fn=None
用xtuner train
命令启动训练、
xtuner train /root/personal_assistant/config/internlm_chat_7b_qlora_oasst1_e3_copy.py
会在训练完成后,输出用于验证的Sample output
训练后的pth格式参数转Hugging Face格式
创建用于存放Hugging Face格式参数的hf文件夹
mkdir /root/personal_assistant/config/work_dirs/hf
export MKL_SERVICE_FORCE_INTEL=1
配置文件存放的位置
export CONFIG_NAME_OR_PATH=/root/personal_assistant/config/internlm_chat_7b_qlora_oasst1_e3_copy.py
模型训练后得到的pth格式参数存放的位置
export PTH=/root/personal_assistant/config/work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/epoch_3.pth
pth文件转换为Hugging Face格式后参数存放的位置
export SAVE_PATH=/root/personal_assistant/config/work_dirs/hf
执行参数转换
xtuner convert pth_to_hf $CONFIG_NAME_OR_PATH $PTH $SAVE_PATH
Merge模型参数
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER='GNU'
原始模型参数存放的位置
export NAME_OR_PATH_TO_LLM=/root/personal_assistant/model/Shanghai_AI_Laboratory/internlm-chat-7b
Hugging Face格式参数存放的位置
export NAME_OR_PATH_TO_ADAPTER=/root/personal_assistant/config/work_dirs/hf
最终Merge后的参数存放的位置
mkdir /root/personal_assistant/config/work_dirs/hf_merge
export SAVE_PATH=/root/personal_assistant/config/work_dirs/hf_merge
执行参数Merge
xtuner convert merge \
$NAME_OR_PATH_TO_LLM \
$NAME_OR_PATH_TO_ADAPTER \
$SAVE_PATH \
--max-shard-size 2GB
安装网页Demo所需依赖
pip install streamlit==1.24.0
下载InternLM项目代码,创建code文件夹用于存放InternLM项目代码
mkdir /root/personal_assistant/code && cd /root/personal_assistant/code
git clone https://github.com/InternLM/InternLM.git
将 /root/personal_assistant/codeInternLM/web_demo.py
中 29 行和 33 行的模型路径更换为Merge后存放参数的路径 /root/personal_assistant/config/work_dirs/hf_merge
运行 /root/personal_assistant/code/InternLM
目录下的 web_demo.py
文件,输入以下命令后,将端口映射到本地。在本地浏览器输入 http://127.0.0.1:6006
即可。
streamlit run /root/personal_assistant/code/InternLM/web_demo.py --server.address 127.0.0.1 --server.port 6006
注意:要在浏览器打开 http://127.0.0.1:6006
页面后,模型才会加载。 在加载完模型之后,就可以与微调后的 InternLM-Chat-7B 进行对话了
微调前
微调后,自己的界面有点问题,还没跑出来,放一张大佬做成功的截图。