前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【数据结构】排序算法---基数排序(动图演示)

【数据结构】排序算法---基数排序(动图演示)

作者头像
Crossoads
发布2024-10-22 08:25:25
950
发布2024-10-22 08:25:25
举报
文章被收录于专栏:汇编语言

⚠本节要介绍的不是计数排序

1. 定义

基数排序(英语:Radix sort)是一种非比较型的排序算法,最早用于解决卡片排序的问题。基数排序将待排序的元素拆分为k个关键字,逐一对各个关键字排序后完成对所有元素的排序。

  • 如果是从第1关键字到第k关键字顺序进行比较,则该基数排序称为 MSD(Most Significant Digit first)基数排序——最高位优先法(从高位到低位);
  • 如果是从第k关键字到第1关键字顺序进行比较,则该基数排序称为 LSD(Least Significant Digit first)基数排序——最低位优先法(从低位到高位)。

基数排序是将整数按位数切割成不同的数字,然后按每个位数分别比较,由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

2. 算法步骤

2.1 MSD基数排序

将待排序的元素拆分为k个关键字,先对第1关键字进行稳定排序,然后对于每组 具有相同关键字的元素 再对第2关键字进行稳定排序(递归执行)……最后对于每组 具有相同关键字的元素 再对第k关键字进行稳定排序。

一般而言,我们默认基数排序是稳定的,所以在 MSD 基数排序中,我们也仅仅考虑借助 稳定算法(通常使用计数排序)完成内层对关键字的排序。

2.2 LSD基数排序

将待排序的元素拆分为k个关键字,然后先对 所有元素 的第k关键字进行稳定排序,再对 所有元素 的第k-1关键字进行稳定排序,再对 所有元素 的第k-2关键字进行稳定排序……最后对 所有元素 的第1关键字进行稳定排序,这样就完成了对整个待排序序列的稳定排序。

LSD 基数排序也需要借助一种 稳定算法 完成内层对关键字的排序。同样的,通常使用计数排序来完成。

3. LSD 基数排序动图演示

4. 性质

稳定性

如果对内层关键字的排序是稳定的,则 MSD 基数排序和 LSD 基数排序都是稳定的排序算法。

空间复杂度

MSD 基数排序和 LSD 基数排序的空间复杂度都为

O(k+n)

时间复杂度

基数排序每一位的比较可以使用线性排序,比如桶排序或者计数排序,当然需要保证如计数排序的稳定性。每次排序时间复杂度O(n),那么如果有k位,则时间复杂度为

O(k*n)

,如果k不大比如手机号11位,那么时间复杂度就是

O(n)

通常而言,基数排序比基于比较的排序算法(比如快速排序)要快。但由于需要额外的内存空间,因此当内存空间稀缺时,原地置换算法(比如快速排序)或许是个更好的选择。 一般来说,如果每个关键字的值域都不大,就可以使用 [计数排序]作为内层排序,此时的复杂度为

O(kn+{\sum_{i=1}^k}wi)

,其中

wi

为第i关键字的值域大小。如果关键字值域很大,就可以直接使用基于比较的

O(nklogn)

排序而无需使用基数排序了。

5. 算法分析

基数排序基于分别排序,分别收集,所以是稳定的。但基数排序的性能比桶排序要略差,每一次关键字的桶分配都需要

O(n)

的时间复杂度,而且分配之后得到新的关键字序列又需要

O(n)

的时间复杂度。假如待排数据可以分为d个关键字,则基数排序的时间复杂度将是

O(d*2n)

,当然d要远远小于n,因此基本上还是线性级别的。

基数排序的空间复杂度为O(n+k),其中k为桶的数量。一般来说

n>>k

,因此额外空间需要大概n个左右。

6. 代码实现

C语言

代码语言:javascript
复制
#include<stdio.h>
#define MAX 20
//#define SHOWPASS
#define BASE 10

void print(int *a, int n) {
  int i;
  for (i = 0; i < n; i++) {
    printf("%d\t", a[i]);
  }
}

void radixsort(int *a, int n) {
  int i, b[MAX], m = a[0], exp = 1;

  for (i = 1; i < n; i++) {
    if (a[i] > m) {
      m = a[i];
    }
  }

  while (m / exp > 0) {
    int bucket[BASE] = { 0 };

    for (i = 0; i < n; i++) {
      bucket[(a[i] / exp) % BASE]++;
    }

    for (i = 1; i < BASE; i++) {
      bucket[i] += bucket[i - 1];
    }

    for (i = n - 1; i >= 0; i--) {
      b[--bucket[(a[i] / exp) % BASE]] = a[i];
    }

    for (i = 0; i < n; i++) {
      a[i] = b[i];
    }

    exp *= BASE;

#ifdef SHOWPASS
    printf("\nPASS   : ");
    print(a, n);
#endif
  }
}

int main() {
  int arr[MAX];
  int i, n;

  printf("Enter total elements (n <= %d) : ", MAX);
  scanf("%d", &n);
  n = n < MAX ? n : MAX;

  printf("Enter %d Elements : ", n);
  for (i = 0; i < n; i++) {
    scanf("%d", &arr[i]);
  }

  printf("\nARRAY  : ");
  print(&arr[0], n);

  radixsort(&arr[0], n);

  printf("\nSORTED : ");
  print(&arr[0], n);
  printf("\n");

  return 0;
}

Python

代码语言:javascript
复制
# coding=utf-8
def radix_sort(array):
    max_num = max(array)
    place = 1
    while max_num >= 10**place:
        place += 1
    for i in range(place):
        buckets = [[] for _ in range(10)]
        for num in array:
            radix = int(num/(10**i) % 10)
            buckets[radix].append(num)
        j = 0
        for k in range(10):
            for num in buckets[k]:
                array[j] = num
                j += 1
    return array
 
 
if __name__ == '__main__':
    array = [25, 17, 33, 17, 22, 13, 32, 15, 9, 25, 27, 18]
    print(radix_sort(array))

Java

代码语言:javascript
复制
/**
 * 基数排序
 * 考虑负数的情况还可以参考: https://code.i-harness.com/zh-CN/q/e98fa9
 */
public class RadixSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        int maxDigit = getMaxDigit(arr);
        return radixSort(arr, maxDigit);
    }

    /**
     * 获取最高位数
     */
    private int getMaxDigit(int[] arr) {
        int maxValue = getMaxValue(arr);
        return getNumLenght(maxValue);
    }

    private int getMaxValue(int[] arr) {
        int maxValue = arr[0];
        for (int value : arr) {
            if (maxValue < value) {
                maxValue = value;
            }
        }
        return maxValue;
    }

    protected int getNumLenght(long num) {
        if (num == 0) {
            return 1;
        }
        int lenght = 0;
        for (long temp = num; temp != 0; temp /= 10) {
            lenght++;
        }
        return lenght;
    }

    private int[] radixSort(int[] arr, int maxDigit) {
        int mod = 10;
        int dev = 1;

        for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
            // 考虑负数的情况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10)
            int[][] counter = new int[mod * 2][0];

            for (int j = 0; j < arr.length; j++) {
                int bucket = ((arr[j] % mod) / dev) + mod;
                counter[bucket] = arrayAppend(counter[bucket], arr[j]);
            }

            int pos = 0;
            for (int[] bucket : counter) {
                for (int value : bucket) {
                    arr[pos++] = value;
                }
            }
        }

        return arr;
    }

    /**
     * 自动扩容,并保存数据
     *
     * @param arr
     * @param value
     */
    private int[] arrayAppend(int[] arr, int value) {
        arr = Arrays.copyOf(arr, arr.length + 1);
        arr[arr.length - 1] = value;
        return arr;
    }
}

C++

代码语言:javascript
复制
int maxbit(int data[], int n) //辅助函数,求数据的最大位数
{
    int maxData = data[0];              ///< 最大数
    /// 先求出最大数,再求其位数,这样有原先依次每个数判断其位数,稍微优化点。
    for (int i = 1; i < n; ++i)
    {
        if (maxData < data[i])
            maxData = data[i];
    }
    int d = 1;
    int p = 10;
    while (maxData >= p)
    {
        //p *= 10; // Maybe overflow
        maxData /= 10;
        ++d;
    }
    return d;
/*    int d = 1; //保存最大的位数
    int p = 10;
    for(int i = 0; i < n; ++i)
    {
        while(data[i] >= p)
        {
            p *= 10;
            ++d;
        }
    }
    return d;*/
}
void radixsort(int data[], int n) //基数排序
{
    int d = maxbit(data, n);
    int *tmp = new int[n];
    int *count = new int[10]; //计数器
    int i, j, k;
    int radix = 1;
    for(i = 1; i <= d; i++) //进行d次排序
    {
        for(j = 0; j < 10; j++)
            count[j] = 0; //每次分配前清空计数器
        for(j = 0; j < n; j++)
        {
            k = (data[j] / radix) % 10; //统计每个桶中的记录数
            count[k]++;
        }
        for(j = 1; j < 10; j++)
            count[j] = count[j - 1] + count[j]; //将tmp中的位置依次分配给每个桶
        for(j = n - 1; j >= 0; j--) //将所有桶中记录依次收集到tmp中
        {
            k = (data[j] / radix) % 10;
            tmp[count[k] - 1] = data[j];
            count[k]--;
        }
        for(j = 0; j < n; j++) //将临时数组的内容复制到data中
            data[j] = tmp[j];
        radix = radix * 10;
    }
    delete []tmp;
    delete []count;
}

Go

代码语言:javascript
复制
var (
	K int = 3 // 基数排序需要的全局变量
	RADIX int = 10
	queue [][]int
)
func radix_sort_queue_pop(qu []int) []int {
    if len(qu) == 0 {
        return qu // 如果数组为空,不做任何操作
    }
    // 删除第一个元素
    qu = qu[1:]
    return qu
}
func radix_sort_queue_push(qu []int, data int) []int {
	qu = append(qu, data)
	return qu
}
func radix_sort_get_key(value int, k int) int {
	key := 0
	for k >= 0 {
		key = value % 10
		value /= 10
		k--
	}
	return key
}
func radix_sort_distribute(arr []int, left int, right int, k int){
	// k表示是第几次分发数据
	for i:=left; i<right; i++ {
		key := radix_sort_get_key(arr[i], k)
		queue[key] = radix_sort_queue_push(queue[key], arr[i])
	}
}
func radix_sort_collect(arr []int) {
	k := 0
	for i:=0; i < RADIX; i++ {
		for len(queue[i]) != 0 {
			arr[k] = queue[i][0] // 先进先出
			k++
			queue[i] = radix_sort_queue_pop(queue[i])
		}
	}
}
func radix_sort_by_group(arr []int, left int, right int) {
	for i:=0; i<K; i++ {
		// 分发数据
		radix_sort_distribute(arr, left, right, i)
		// 回收数据
		radix_sort_collect(arr)
	}
}
func radix_sort(arr []int, sz int) {
	// 初始化队列
	queue = make([][]int, RADIX)
	left := 0
	right := sz;
	radix_sort_by_group(arr, left, right)
}

结语

今天的分享到这里就结束啦!如果觉得文章还不错的话,可以三连支持一下。

也可以点点关注,避免以后找不到我哦!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-10-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 定义
  • 2. 算法步骤
    • 2.1 MSD基数排序
      • 2.2 LSD基数排序
      • 3. LSD 基数排序动图演示
      • 4. 性质
      • 5. 算法分析
      • 6. 代码实现
        • C语言
          • Python
            • Java
              • C++
                • Go
                • 结语
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档