本文旨在帮助Java 大佬们快速理解文本数据,如何检查语料可能的问题,并为后续模型训练提供超参数选择的参考。
本文数据集特点:
train.tsv
是训练集,dev.tsv
是验证集,数据格式相同train.tsv
)sentence label
早餐不好,服务不到位,晚餐无西餐,早餐晚餐相同,房间条件不好,餐厅不分吸烟区.房间不分有无烟房. 0
去的时候 ,酒店大厅和餐厅在装修,感觉大厅有点挤.由于餐厅装修本来该享受的早饭,也没有享受(他们是8点开始每个房间送,但是我时间来不及了)不过前台服务员态度好! 1
数据包含两列:
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
train_data = pd.read_csv("./cn_data/train.tsv", sep="\t")
valid_data = pd.read_csv("./cn_data/dev.tsv", sep="\t")
sns.countplot(x="label", data=train_data)
plt.title("训练集标签分布")
plt.show()
sns.countplot(x="label", data=valid_data)
plt.title("验证集标签分布")
plt.show()
训练集标签数量分布:
验证集标签数量分布:
分析: 深度学习模型评估,一般用ACC作为评估指标,若想将ACC的基线定义在50%左右,则需正负样本比例维持在1:1左右,否则就要进行必要的数据增强或数据删减。上图中训练和验证集正负样本都稍有不均衡, 可以进行一些数据增强。
# 在训练数据中添加新的句子长度列, 每个元素的值都是对应的句子列的长度
train_data["sentence_length"] = list(map(lambda x: len(x), train_data["sentence"]))
# 绘制句子长度列的数量分布图
sns.countplot("sentence_length", data=train_data)
# 主要关注count长度分布的纵坐标, 不需要绘制横坐标, 横坐标范围通过dist图进行查看
plt.xticks([])
plt.show()
# 绘制dist长度分布图
sns.distplot(train_data["sentence_length"])
# 主要关注dist长度分布横坐标, 不需要绘制纵坐标
plt.yticks([])
plt.show()
# 在验证数据中添加新的句子长度列, 每个元素的值都是对应的句子列的长度
valid_data["sentence_length"] = list(map(lambda x: len(x), valid_data["sentence"]))
# 绘制句子长度列的数量分布图
sns.countplot("sentence_length", data=valid_data)
# 主要关注count长度分布的纵坐标, 不需要绘制横坐标, 横坐标范围通过dist图进行查看
plt.xticks([])
plt.show()
# 绘制dist长度分布图
sns.distplot(valid_data["sentence_length"])
# 主要关注dist长度分布横坐标, 不需要绘制纵坐标
plt.yticks([])
plt.show()
训练集句子长度分布:
验证集句子长度分布:
分析:通过绘制句子长度分布图,可知我们的语料中大部分句子长度的分布范围, 因为模型的输入要求为固定尺寸的张量,合理的长度范围对之后进行句子截断补齐(规范长度)起到关键的指导作用. 上图中大部分句子长度的范围大致为20-250之间。
sns.stripplot(x='label', y='sentence_length', data=train_data)
plt.title("训练集正负样本句子长度分布")
plt.show()
sns.stripplot(x='label', y='sentence_length', data=valid_data)
plt.title("验证集正负样本句子长度分布")
plt.show()
训练集上正负样本的长度散点分布:
验证集上正负样本的长度散点分布:
分析:通过查看正负样本长度散点图,有效定位异常点的出现位置,帮助我们更准确进行人工语料审查。 上图中在训练集正样本中出现异常点,它的句子长度近3500左右,需人工审查。
# 导入jieba用于分词
# 导入chain方法用于扁平化列表
import jieba
from itertools import chain
# 进行训练集的句子进行分词, 并统计出不同词汇的总数
train_vocab = set(chain(*map(lambda x: jieba.lcut(x), train_data["sentence"])))
print("训练集共包含不同词汇总数为:", len(train_vocab))
# 进行验证集的句子进行分词, 并统计出不同词汇的总数
valid_vocab = set(chain(*map(lambda x: jieba.lcut(x), valid_data["sentence"])))
print("训练集共包含不同词汇总数为:", len(valid_vocab))
输出效果:
训练集共包含不同词汇总数为: 12147
训练集共包含不同词汇总数为: 6857
# 使用jieba中的词性标注功能
import jieba.posseg as pseg
def get_a_list(text):
"""用于获取形容词列表"""
# 使用jieba的词性标注方法切分文本,获得具有词性属性flag和词汇属性word的对象,
# 从而判断flag是否为形容词,来返回对应的词汇
r = []
for g in pseg.lcut(text):
if g.flag == "a":
r.append(g.word)
return r
# 导入绘制词云的工具包
from wordcloud import WordCloud
def get_word_cloud(keywords_list):
# 实例化绘制词云的类, 其中参数font_path是字体路径, 为了能够显示中文,
# max_words指词云图像最多显示多少个词, background_color为背景颜色
wordcloud = WordCloud(font_path="./SimHei.ttf", max_words=100, background_color="white")
# 将传入的列表转化成词云生成器需要的字符串形式
keywords_string = " ".join(keywords_list)
# 生成词云
wordcloud.generate(keywords_string)
# 绘制图像并显示
plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
# 获得训练集上正样本
p_train_data = train_data[train_data["label"]==1]["sentence"]
# 对正样本的每个句子的形容词
train_p_a_vocab = chain(*map(lambda x: get_a_list(x), p_train_data))
#print(train_p_n_vocab)
# 获得训练集上负样本
n_train_data = train_data[train_data["label"]==0]["sentence"]
# 获取负样本的每个句子的形容词
train_n_a_vocab = chain(*map(lambda x: get_a_list(x), n_train_data))
# 调用绘制词云函数
get_word_cloud(train_p_a_vocab)
get_word_cloud(train_n_a_vocab)
训练集正样本形容词词云:
训练集负样本形容词词云:
# 获得验证集上正样本
p_valid_data = valid_data[valid_data["label"]==1]["sentence"]
# 对正样本的每个句子的形容词
valid_p_a_vocab = chain(*map(lambda x: get_a_list(x), p_valid_data))
#print(train_p_n_vocab)
# 获得验证集上负样本
n_valid_data = valid_data[valid_data["label"]==0]["sentence"]
# 获取负样本的每个句子的形容词
valid_n_a_vocab = chain(*map(lambda x: get_a_list(x), n_valid_data))
# 调用绘制词云函数
get_word_cloud(valid_p_a_vocab)
get_word_cloud(valid_n_a_vocab)
验证集正样本形容词词云:
验证集负样本形容词词云:
分析:根据高频形容词词云显示,可对当前语料质量进行简单评估,同时对违反语料标签含义的词汇进行人工审查和修正,保证绝大多数语料符合训练标准。上图中的正样本大多数是褒义词,而负样本大多数是贬义词,基本符合要求,但负样本词云中也存在"便利"这样的褒义词,因此可人工进行审查。
本文为各位 Javaer 提供了一系列文本数据分析方法,帮助更好地理解语料,为后续的机器学习模型训练提供基础。
本文已收录在Github,关注我,紧跟本系列专栏文章,咱们下篇再续!
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。