预训练语言模型(PLMs)在各种NLP任务中表现出色,但传统微调方法存在高计算成本问题。提示调优作为高效替代方案,仅需在输入序列前添加少量可训练参数,同时冻结PLM参数。然而固定提示会降低模型灵活性。联邦学习(FL)技术虽能解决数据隐私问题,但仍面临客户端通信与计算资源限制的挑战。
提出联邦动态提示生成器(FedDPG),核心创新包括:
在三个NLP基准数据集上的测试表明:
该技术特别适用于:
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。