大家好,我是 Ai 学习的老章
Ollama 是咱们公众号的常客了,比较重要的几个功能升级我都写过文章介绍
Ollama 背后执行推理的核心技术其实是由 llama.cpp 承担的,GGUF 模型格式也是由 llama.cpp 的作者所开发。
现在 llama.cpp 迎来重大更新,它也有了自己的 Web UI,我测试了安装部署和自行打包,很多地方确实比 Ollama 还有方便好用。
官方介绍,优势如下:
使用之前需要先安装 llama.cpp server

我还是喜欢命令行直接安装
## Winget (Windows)
winget install llama.cpp
## Homebrew (Mac and Linux)
brew install llama.cpp
然后启动 UI,也是命令行,为了快速测试,我调用 Qwen2.5 的 0.5b
llama-server -hf Qwen/Qwen2.5-0.5B-Instruct-GGUF --jinja -c 0 --host 127.0.0.1 --port 8033
量化后模型文件来到不到 500Mb,我发现它默认选 q4_k_m

然后浏览器打开

随便问个问题,速度 97t/s

对比 Ollama 82t/s的样子

其他功能也都挺实用
从磁盘或剪贴板添加多个文本文件到对话的上下文中

将一个或多个 PDF 附件添加到对话中。默认情况下,PDF 的内容将被转换为纯文本,不包括任何视觉元素。

也可以在 AI 模型支持的情况下将 PDF 处理为图像。

当所选的 AI 模型具有视觉输入能力时,可以在对话中插入图片:

图片可以与文本上下文一起插入:

可以渲染数学表达式:

使用 Import/Export 选项直接管理私人对话:

新的 WebUI 对移动设备友好:

其他功能还有,比如:
目前硬伤是只能浏览器,想打包成 app 也可以,我使用的是 tw93 开发的 pake,一行命令即可,本地服务也可以打包成 app

然后它就将只能浏览器访问的 web 应用打包成 app 了

如此轻量舒服的应用,我与这位网友有相同的期待——支持其他模型的接入

总结来看,比之前想要挑战 ollama 的 Shimmy 要好很多,但是 Ollama 玩了这么久也不是吃素的 1、Ollama 有更加方便的 app,随时切换本地模型甚是方便 2、Ollama 还有免费云模型可以调用呢,deepseek-v3.1:671b-cloud都敢给 3、网络问题,它目前只能支持 HF 下载模型,国内用户不友好 4、网络搜索和 MCP 也不支持
最后再说一句,它和 ollama 一样,都适合个人用户使用,企业就别折腾了,并发太差:不要再用 _Ollama_,不要再用 llama.cpp