目前,我有一个包含5个venn图子图的数字。所有5个图都是2个圆金星,每个图都有不同的元素和。请参阅此图。
我想知道是否有可能把这6个子地块都划分成同样的规模?例如,我的整个第一个venn将比第五个要小。
下面的代码。任何帮助都是最值得感激的。
from matplotlib_venn import venn2
from matplotlib import pyplot as plt
import numpy as np
figure, axes = plt.subplots(2, 3, figsize=(11.69,8.27))
BSL_20=(313,10,76)
BSL_40=(384,17,150)
BSL_100=(665,8,378)
BSL_100CC=(860,23,879)
BSL_200=(585,17,758)
v1=venn2(BSL_20, set_labels = ('150mm at 50%', '400mm at 25%'), ax=axes[0][0])
v2=venn2(BSL_40, set_labels = ('150mm at 50%', '400mm at 25%'), ax=axes[0][1])
v3=venn2(BSL_100, set_labels = ('150mm at 50%', '400mm at 25%'), ax=axes[0][2])
v4=venn2(BSL_100CC, set_labels = ('150mm at 50%', '400mm at 25%'), ax=axes[1][0])
v5=venn2(BSL_200, set_labels = ('150mm at 50%', '400mm at 25%'), ax=axes[1][1])
v6=venn2(BSL_200, set_labels = ('150mm at 50%', '400mm at 25%'), ax=axes[1][1])
axes[1,2].axis('off')
plt.show()
发布于 2015-12-10 06:18:10
尝试在plt.show()
之前将其添加到代码中
from matplotlib.cbook import flatten
data = [BSL_20, BSL_40, BSL_100, BSL_100CC, BSL_200]
max_area = max(map(sum, data))
def set_venn_scale(ax, true_area, reference_area=max_area):
s = np.sqrt(float(reference_area)/true_area)
ax.set_xlim(-s, s)
ax.set_ylim(-s, s)
for a, d in zip(flatten(axes), data):
set_venn_scale(a, sum(d))
解释:
matplotlib_venn
绘制的补丁被缩放,使其总面积为1。图的中心位于点(0,0)附近,并配置了轴限值,以使该图能紧密地容纳在图内。xlim(-1, 1)
和ylim(-1, 1)
,那么您将得到所有的图都有相同的总面积(假设所有子图都以相同的比例显示)。sqrt(2)
简单地放大所有轴的限制。sqrt(max_area/required_area)
。您还可以在Y轴上放松一些,并将代码和图表包装得更紧,如下所示:
from matplotlib_venn import venn2
from matplotlib.cbook import flatten
from matplotlib import pyplot as plt
import numpy as np
figure, axes = plt.subplots(2, 3, figsize=(11.69,5.5))
BSL_20=(313,10,76)
BSL_40=(384,17,150)
BSL_100=(665,8,378)
BSL_100CC=(860,23,879)
BSL_200=(585,17,758)
data = [BSL_20, BSL_40, BSL_100, BSL_100CC, BSL_200]
max_area = max(map(sum, data))
def set_venn_scale(vd, ax, true_area, reference_area=max_area):
sx = np.sqrt(float(reference_area)/true_area)
sy = max(vd.radii)*1.3
ax.set_xlim(-sx, sx)
ax.set_ylim(-sy, sy)
for a, d in zip(flatten(axes), data):
vd = venn2(d, set_labels = ('150mm at 50%', '400mm at 25%'), ax=a)
set_venn_scale(vd, a, sum(d))
axes[1,2].axis('off')
figure.tight_layout(pad=0.1)
plt.show()
但是,请注意,如果tight_layout
感到空间不足,它将开始重新缩放您的子图,因此检查结果(例如,通过ax.set_axis_on()
在子图周围添加轴,并确保所有子图都具有相同的宽度)。
https://stackoverflow.com/questions/34183870
复制