mysql中B+Tree索引和Hash索引的不同 不同点 1、hash索引适合等值查询、没办法利用索引完成排序、不支持多列联合索引的最左匹配规则等。...如果有大量重复健值得情况下,hash索引的效率会很低,因为哈希碰撞问题。 哈希索引也不支持多列联合索引的最左匹配规则; 2、B+树索引的关键字检索效率比较平均。...不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。 在大多数场景下,都会有范围查询、排序、分组等查询特征,用B+树索引就可以了。...实例 比如如下的语句: unique key unique_username using btree(`user_name`) 这里的using btree只是显示的指定的使用的索引的方式为b+树,对于...以上就是mysql中B+Tree索引和Hash索引的不同,希望对大家有所帮助。更多mysql学习指路:MySQL 推荐操作系统:windows7系统、mysql5.8、DELL G3电脑
前言 这篇文章的题目,是我真实在面试过程中遇到的问题,某互联网众筹公司在考察面试者MySQL相关知识的第一个问题,我当时还是比较懵的,没想到这年轻人不讲武德,不按套路出牌,一般的问MySQL的相关知识的时候...怎么还出来了,存储文件的不同?哪怕考察个MVCC机制也行啊。所以这次我就好好总结总结这部分知识点。...为什么需要建立索引 首先,我们都知道建立索引的目的是为了提高查询速度,那么为什么有了索引就能提高查询速度呢? 我们来看一下,一个索引的示意图。 ?...MySQL的索引为什么选择了B+Tree 经过上面的层层分析,现在我们可以总结一下MySQL为什么选择了B+Tree作为它索引的数据结构呢。...经过以上几点的分析,MySQL最终选择了B+Tree作为了它的索引的数据结构。 InnDB的数据存储文件和MyISAM的有何不同?
: ts['1949-1' : '1949-6'] 注意时间索引的切片操作起点和尾部都是包含的,这点与数值索引有所不同 pandas还有很多方便的时间序列函数,在后面的实际应用中在进行说明。...以虚假回归为例,当响应变量和输入变量都平稳时,我们用t统计量检验标准化系数的显著性。...而当响应变量和输入变量不平稳时,其标准化系数不在满足t分布,这时再用t检验来进行显著性分析,导致拒绝原假设的概率增加,即容易犯第一类错误,从而得出错误的结论。...平滑法 根据平滑技术的不同,平滑法具体分为移动平均法和指数平均法。...这时我们可以依据BIC准则识别模型的p, q值,通常认为BIC值越小的模型相对更优。这里我简单介绍一下BIC准则,它综合考虑了残差大小和自变量的个数,残差越小BIC值越小,自变量个数越多BIC值越大。
来源:Deephub Imba本文约1800字,建议阅读5分钟广义线性模型是线性模型的扩展,通过联系函数建立响应变量的数学期望值与线性组合的预测变量之间的关系。...广义线性模型[generalize linear model(GLM)]是线性模型的扩展,通过联系函数建立响应变量的数学期望值与线性组合的预测变量之间的关系。...在广义线性模型的理论框架中,则假设目标变量Y则是服从指数分布族,正态分布和伯努利分布都属于指数分布族,因此线性回归和逻辑回归可以看作是广义线性模型的特例。...线性回归 线性回归用于通过解释变量 X 的线性组合来预测连续变量 y 的值。 在单变量情况下,线性回归可以表示如下: 模型假定噪声项的正态分布。..., endog = sm.add_constant(x), y # Poisson regression mod = sm.GLM(endog, exog, family=sm.families.Poisson
scRNA-seq分析的一个挑战是没有办法通过评估技术重复来区分生物和技术各自带来的变化有多大比例。...rowData(umi.qc)$is_feature_control umi.qc_endog endog_genes,] umi.qc数据集包含质控过滤后的细胞和基因...scater通过构建线性模型判断主成分与各个影响变量的相关性,从而判断哪些实验或质控变量导致细胞在主成分上的分布。...因此在基因表达标准化过程中需要考虑移除这些因素的影响或整合到下游的统计分析模型中。ERCC的表达也是重要的解释变量,另外一个显著的特征是batch比individual更多解释基因表达的差异。...(Seurat+Scran也可以) 另外,不同的实验方案对转录本的覆盖偏好也不同,这一偏好依赖于A/T的平均含量或短的转录本的捕获能力。理想情况下,我们需要消除这些所有的差异和偏差。
例如,如果在不同实验室中或甚至在同一实验室中的不同日期制备两组样品,那么我们可以观察到一起处理的样品之间更大的相似性。在最坏的情况下,批量效应可能被误认为是真正的生物变异。...主成分的数量小于或等于原始变量的数量。 在数学上,PC对应于协方差矩阵的特征向量。...为什么第一个PC变化所引起的方差分数如此显着? 提示使用ntop函数的参数plotPCA。 我们的答案 ? ? 如果您的答案不同,请将您的代码与我们的代码进行比较(您需要在打开的文件中搜索此练习)。...与PCA相比,tSNE是一种随机算法,这意味着在同一数据集上多次运行该方法将导致不同的图。由于算法的非线性和随机性,tSNE更难以直观地解释。...完成后,请将您的结果与我们的结果进行比较(下一章)。
lstsq的输出包括四部分:回归系数、残差平方和、自变量X的秩、X的奇异值。一般只需要回归系数就可以了。...它的主要思想是给解释变量加上一个权重,从而使得加上权重后的回归方程方差是相同的.因此在GLS方法下可以得到估计量的无偏和一致估计。 ? ?...常用的输入包括因变量endog,自变量exog,残差的协方差阵sigma,missing设定样本中缺失值的处理方法,这里exog也是不带截距项的,需要自己加入,可以用sm.add_constant(),...endog表示Y,exog表示X,constr线性约束的A,params表示线性约束的B,默认为0,sigma是权重,同GLS。...比如可以添加行业的市值占比和系数乘积的和为0: ?
枢轴点(Pivot Points)是一种用于股票、期货、外汇等金融市场的交易的技术分析工具。它们帮助交易者确定可能的支撑和阻力水平,以及价格可能发生反转的地方。...枢轴点是基于前一个交易日的高、低和收盘价计算出来的。...处理完每个价格后,我们对新的计算价格重复此过程。 为什么我们每次递归时要使用length+1?...枢轴点检测 所以我们用更简单的方法来进行枢轴点检测。给定窗口价格,我检查这些价格是否像一个V形的最小值或一个翻转V形的最大值。代码如下。...=0.1): model = sm.nonparametric.KernelReg(endog=price_array, exog=x_values, var_type='c', reg_type
实际情况的复杂性给业务量的分析预测带来了许多挑战: 具有业务特征的周期性影响 节假日等特定时序节点的变异 地域差异,空间的相互作用 受到库存、实际市场容量的影响 其他外生变量,不可控自然或社会因素 对于时间序列的分析...平稳分为严平稳和宽平稳,严平稳保证时间序列的任何有限维分布对于时间的平移是不变的,比如高斯白噪声就是严平稳序列;宽平稳则要求协方差结构随时间的平移而不变,或均值和方差是不变的。 为什么需要平稳?...图5 严格来看,ACF和PACF显示存在一定程度的拖尾和振荡。但是,ACF和PACF在3阶后有骤降和平稳的趋势,考虑到是短期预测的场景,可进一步结合预测效果和模型检验来进行判断。...),结果并不是太理想,所以我们需要对模型进行优化,考虑是因为指标受到了节假日和周的影响,所以在模型的外生变量里面我们加入节假日和周的识别参数。...加入exog外生变量后,需要重新定阶,重新训练模型,步骤与上类似。优化后的预测误差1.77%,相比之前有了很大程度的提升。 ? 图8 Step7、模型检验 用模型残差来检验模型的合理性。
我最喜欢的是令人惊叹的文档。 我们可以使用操作系统的包管理器安装 scikit-learn。 根据操作系统的不同,此选项可能可用也可能不可用,但它应该是最方便的方法。...: 工作原理 我们使用了以下DataFrame方法: 函数 描述 pandas.DataFrame() 此函数使用指定的数据,索引(行)和列标签构造DataFrame。...DataSet对象具有名为exog的属性,当作为 Pandas 对象加载时,该属性将成为具有多个列的DataFrame对象。 在我们的案例中,它还有一个endog属性,其中包含世界铜消费量的值。...通过创建OLS对象并调用其fit()方法来执行普通的最小二乘计算,如下所示: x, y = data.exog, data.endog fit = statsmodels.api.OLS(y, x)....其中,此类具有endog和exog属性。 Statsmodels 具有load()函数,该函数将数据作为 NumPy 数组加载。
for line in f: fout.write(line) f.close() fout.close() first() 各个家庭的数据收集是不同的...tab:blue') plt.title('Energy Consumption and Dew Point') fig.tight_layout() plt.show() 天气变量和能源消耗之间的相关性...露点、紫外线指数显示与温度多重共线性,故弃用 云层和能见度显示与湿度多重共线性,故弃用 压力和月相与能量的相关性最小,故弃用 风速与能量相关性较低 聚类分析 因为天气信息有很多变量,但不是所有的变量都有用...algorithm = 'auto') kmeans.fit(weather_scaled) weather_energy['weather_cluster'] = kmeans.labels_ # 天气变量的关系...(endog=endog, exog=exog, order=(7,1,1),seasonal_order=(1,1, 0, 12),trend='c') mod = sm.tsa.statespace.SARIMAX
广义线性模型[generalize linear model(GLM)]是线性模型的扩展,通过联系函数建立响应变量的数学期望值与线性组合的预测变量之间的关系。...在广义线性模型的理论框架中,则假设目标变量Y则是服从指数分布族,正态分布和伯努利分布都属于指数分布族,因此线性回归和逻辑回归可以看作是广义线性模型的特例。...link function也被翻译为连接函数,这里觉得联系函数更为贴切所以还是翻译为联系函数 线性回归 线性回归用于通过解释变量 X 的线性组合来预测连续变量 y 的值。...在单变量情况下,线性回归可以表示如下 模型假定噪声项的正态分布。该模型说明如下 泊松回归 泊松分布用于对计数数据进行建模。它只有一个参数代表分布的均值和标准差。..., endog = sm.add_constant(x), y # Poisson regression mod = sm.GLM(endog, exog, family=sm.families.Poisson
本文的目的是用python实现outreg2的效果,得到上面这样的结果,方便对比和分析。...; drop_omitted:是否包含没有包括在regressor_order中的变量。...01 OLS格式化输出 例子使用前文Fama-Macbeth中使用过的数据,首先取其中一期的数据做回归,这里主要是展示格式化输出的结果,所以不要太在意系数的符号和显著性。...最后把五次回归的结果合并在一起格式化输出,注意这里行业用的时中信一级行业,虚拟变量个数很多,所以用drop_omitted设置不输出这些虚拟变量的系数。...= list(resfm.model.exog.dataframe.columns) resfm.model.endog_names = list(resfm.model.dependent.dataframe.columns
statsmodels包含许多经典的统计方法,但没有贝叶斯方法和机器学习模型。...Statsmodels包含的模型有: 线性模型,广义线性模型和健壮线性模型 线性混合效应模型 方差(ANOVA)方法分析 时间序列过程和状态空间模型 广义矩估计 Statsmodels 的线性模型有两种不同的接口...在一个2×2的图中绘制了四幅图:"endog vs exog","残差vs exog","拟合vs exog"和"拟合+残差vs exog" fig = plt.figure(figsize=(15,8...fig=fig) 回归图像解释 "Y和拟合x"图绘制了因变量相对于预测值与置信区间。..."分量和分量加残差"的图像是一个偏回归图像的扩展,但显示了在开盘价的协同因素中添加了其他的独立变量后,增加的影响使得趋势线有误差。
大家好,我是云朵君!...、异常值 通过特征的缺失值、异常值的数量 处理缺失值和异常值 编码分类变量 图形单变量分析,双变量 规范化和缩放 df.info() endog, exog) endog 是因变量 exog是自变量。...它将仅截取模型与我们的具有特征的模型进行比较。零假设是"所有回归系数都等于 0,这意味着两个模型都相等"。替代假设是“拦截唯一比我们的模型差的模型,这意味着我们添加的系数提高了模型性能。...今天和云朵君一起学习了简单线性回归 (SLR) 的基础知识,使用不同的 Python 库构建线性模型,并从 OLS statsmodels 的model summary表中得出重要推论。
Statsmodels包含的模型有: 线性模型,广义线性模型和健壮线性模型 线性混合效应模型 方差(ANOVA)方法分析 时间序列过程和状态空间模型 广义矩估计 Statsmodels 的线性模型有两种不同的接口...P>|t| 统计检验中的P值,这个值越小越能拒绝原假设。 线性回归图像 Statsmodels的plot_regress_exog函数来帮助我们理解我们的模型。 根据一个回归因子绘制回归结果。...在一个2×2的图中绘制了四幅图:"endog vs exog","残差vs exog","拟合vs exog"和"拟合+残差vs exog" fig = plt.figure(figsize=(15,8...回归图像解释 "Y和拟合x"图绘制了因变量相对于预测值与置信区间。图中直线关系在表明开盘价与收盘价是线性正相关的,例如当一个变量增加时另一个变量也增加。..."分量和分量加残差"的图像是一个偏回归图像的扩展,但显示了在开盘价的协同因素中添加了其他的独立变量后,增加的影响使得趋势线有误差。
一、写在开头在上一篇学习序列化的文章中我们提出了这样的一个问题:“如果在我的对象中,有些变量并不想被序列化应该怎么办呢?”...修饰的变量值不会被持久化和恢复;而static关键字修饰的变量并不属于对象本身,所以也同样不会被序列化!...当时没有解释具体为什么static和transient 关键字修饰的变量就不能被序列化了,这个问题实际上在很多大厂的面试中都可能会被问及。我们今天在这篇中进行解释吧。...而这段源码就证明了,为什么在对象序列化过程中,static和transient不会被序列化!...四、总结好啦,今天针对为什么static和transient关键字修饰的变量不能被序列化进行了一个解释,下次大家在面试的时候再被问道就可以这样回答啦,不过,还有的BT面试官会问transient关键字修饰的变量真的不能被序列化吗
我将解释如果不满足这些条件为什么标准的普通最小二乘(OLS)无法确定因果关系。然后,我将介绍可以提供有效解决方案的固定效应(FE)模型。...之后,我将使用两套数据分析示例向您展示如何在python中进行操作。我希望本文能够通过良好的设计和令人信服的结果增强您对因果关系的理解。...在面板数据中,您拥有所有时间段内个人的数据点。基本的面板数据回归模型类似于方程式(1),其中?和?是系数,而i和t是个体和时间的指标。面板数据使您可以控制变量并说明各个变量的差异性。...然后我们取“第二差异”,即“A”和“ B”之间的差异,并标记为“ C”。第二差异衡量两组结果的变化如何不同。差异归因于干预的因果效应。...该数据包含11家公司中每家20年的数据:IBM,通用电气,美国钢铁,大西洋炼油,钻石比赛,西屋电气,通用汽车,固特异,克莱斯勒,联合石油和美国钢铁。在面板数据中,将“确定”和“年份”设置为索引。
建立自回归泊松模型 为了解决残差自相关的情况,我们将引入y的滞后副本,具体为y(t-1)、y(t-2)和y(t-3)作为输出变量的回归变量。...这次,我们将使用直接的Poisson回归模型: poisson_model = dm.Poisson(endog=y_train, exog=X_train) poisson_model_results...此外,三个滞后指标变量d_lag1、d_lag2和d_lag3在95%置信水平下均不具有统计学意义。 预测 让我们使用拟合的滞后变量Poisson模型来预测我们先前预留的测试数据集的罢工次数。...下一步 我们可以尝试通过以下修改来改善滞后变量模型的拟合优度: 除输出外,还将输出变量的前三个时间滞后量作为回归变量。 将输出变量和罢工变量的时滞值作为回归变量。...使用负二项模型(使用NB1或NB2方差函数)代替泊松模型,并将上述类型的滞后变量作为回归变量。 论文和相关连接 Cameron A.
大家好,又见面了,我是你们的朋友全栈君。...# 绘制真实值与预测值的关系 # 真实值与预测值的关系# 设置绘图风格 # plt.style.use(‘ggplot’) # 设置中文编码和负号的正常显示 plt.rc(“font”, family=...# 添加轴标签和标题 plt.title(‘真实值VS.预测值’) plt.xlabel(‘真实值’) plt.ylabel(‘预测值’ ) # 去除图边框的顶部刻度和右边刻度 plt.tick_params...selected=[] current_score,best_new_score=float(‘inf’),float(‘inf’) #目前的分数和最好分数初始值都为无穷大(因为AIC越小越好) #循环筛选变量...不考虑此自变量了 selected.append(best_candidate) #将此自变量作为加进模型中的自变量 current_score=best_new_score #最新的分数等于最好的分数
领取专属 10元无门槛券
手把手带您无忧上云