首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从另一个dataframe列的唯一值创建新的dataframe

从另一个DataFrame列的唯一值创建新的DataFrame,可以通过以下步骤实现:

  1. 首先,使用pandas库导入所需的模块和函数:
代码语言:txt
复制
import pandas as pd
  1. 创建一个原始的DataFrame对象,假设为df:
代码语言:txt
复制
df = pd.DataFrame({'A': [1, 2, 3, 4, 5],
                   'B': ['a', 'b', 'c', 'd', 'e'],
                   'C': ['x', 'y', 'z', 'x', 'y']})

这将创建一个包含三列(A、B、C)的DataFrame对象。

  1. 使用unique()函数获取指定列的唯一值列表:
代码语言:txt
复制
unique_values = df['C'].unique()

这将返回列'C'中的唯一值列表。

  1. 创建一个新的DataFrame对象,其中包含原始DataFrame中列'C'的唯一值:
代码语言:txt
复制
new_df = pd.DataFrame({'Unique Values': unique_values})

这将创建一个新的DataFrame对象new_df,其中包含一个名为'Unique Values'的列,其中包含列'C'的唯一值。

完整的代码示例:

代码语言:txt
复制
import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3, 4, 5],
                   'B': ['a', 'b', 'c', 'd', 'e'],
                   'C': ['x', 'y', 'z', 'x', 'y']})

unique_values = df['C'].unique()
new_df = pd.DataFrame({'Unique Values': unique_values})

print(new_df)

输出结果:

代码语言:txt
复制
  Unique Values
0             x
1             y
2             z

这样,你就可以通过从另一个DataFrame列的唯一值创建新的DataFrame了。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

pandas DataFrame创建方法

pandas DataFrame增删查改总结系列文章: pandas DaFrame创建方法 pandas DataFrame查询方法 pandas DataFrame行或删除方法 pandas...2. csv文件构建DataFrame(csv to DataFrame) 我们实验时候数据一般比较大,而csv文件是文本格式数据,占用更少存储,所以一般数据来源是csv文件,csv文件中如何构建...3.1 添加 此时我们又有一门课physics,我们需要为每个人添加这门课分数,按照Index顺序,我们可以使用insert方法,如下: new_columns = [92,94,89,77,87,91...[6]= new_line 但是十分注意是,这样实际是改操作,如果loc[index]中index已经存在,则会覆盖之前。...当然也可以把这些数据构建为一个DataFrame,然后两个DataFrame拼起来。

2.6K20

pyspark给dataframe增加实现示例

熟悉pandaspythoner 应该知道给dataframe增加一很容易,直接以字典形式指定就好了,pyspark中就不同了,摸索了一下,可以使用如下方式增加 from pyspark import...Jane”, 20, “gre…| 10| | Mary| 21| blue|[“Mary”, 21, “blue”]| 10| +—–+—+———+——————–+——-+ 2、简单根据某进行计算...比如我想对某做指定操作,但是对应函数没得咋办,造,自己造~ frame4 = frame.withColumn("detail_length", functions.UserDefinedFunction...20, “gre…| 3| | Mary| 21| blue|[“Mary”, 21, “blue”]| 3| +—–+—+———+——————–+————-+ 到此这篇关于pyspark给dataframe...增加实现示例文章就介绍到这了,更多相关pyspark dataframe增加内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!

3.4K10
  • Pandas创建DataFrame对象几种常用方法

    DataFrame是pandas常用数据类型之一,表示带标签可变二维表格。本文介绍如何创建DataFrame对象,后面会陆续介绍DataFrame对象用法。...生成后面创建DataFrame对象时用到日期时间索引: ? 创建DataFrame对象,索引为2013年每个月最后一天,列名分别是A、B、C、D,数据为12行4随机数。 ?...创建DataFrame对象,索引与列名与上面的代码相同,数据为12行41到100之间随机数。 ?...根据字典来创建DataFrame对象,字典“键”作为DataFrame对象列名,其中B数据是使用pandasdate_range()函数生成日期时间,C数据来自于使用pandasSeries...除此之外,还可以使用pandasread_excel()和read_csv()函数Excel文件和CSV文件中读取数据并创建DateFrame对象,后面会单独进行介绍。

    3.6K80

    Pandas 查找,丢弃唯一

    前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame唯一,简言之,就是某数值除空外,全都是一样,比如:全0,全1,或者全部都是一样字符串如...:已支付,已支付,已支付… 这些大多形同虚设,所以当数据集很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据 NaN 也会被 Pandas 认为是一种 “ ”,如下图: 所以只要把缺失先丢弃,再统计该唯一个数即可。...代码实现 数据读入 检测唯一所有并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...唯一 ” --> “ 除了空以外唯一个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我其余文章,提建议,共同进步。

    5.7K21

    python dataframe筛选列表转为list【常用】

    筛选列表中,当b中为’1’时,所有c,然后转为list 2 .筛选列表中,当a中为'one',b列为'1'时,所有c,然后转为list 3 .将a整列,转为list(两种) 4....筛选列表,当a=‘one’时,取整行所有,然后转为list 具体看下面代码: import pandas as pd from pandas import DataFrame df = DataFrame...’1’时,所有c,然后转为list b_c = df.c[df['b'] == '1'].tolist() print(b_c) # out: ['一', '一', '四'] # 筛选列表中,...当a中为'one',b列为'1'时,所有c,然后转为list a_b_c = df.c[(df['a'] == 'one') & (df['b'] == '1')].tolist() print(...a_b_c) # out: ['一', '一'] # 将a整列,转为list(两种) a_list_1 = df.a.tolist() a_list_2 = df['a'].tolist()

    5.1K10

    Python 数据处理 合并二维数组和 DataFrame 中特定

    pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame数据合并成一个 NumPy 数组。...values_array = df[["label"]].values 这行代码 DataFrame df 中提取 “label” ,并将其转换为 NumPy 数组。....print(random_array) print(values_array) 上面两行代码分别打印出前面生成随机数数组和 DataFrame 提取出来组成数组。...结果是一个 NumPy 数组 arr,它将原始 DataFrame 中 “label” 作为最后一附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定,展示了如何在 Python 中使用 numpy 和 pandas 进行基本数据处理和数组操作。

    13600

    pandas创建DataFrame7种方法小结

    笔者在学习pandas,在学习过程中总结了一下创建dataframe方法,通过查阅资料总结遗下几种方法,如果你有其他方法欢迎留言补充。 练习代码 请点击此处下载 学习环境: ?...第一种: 用Python中字典生成 ? 第二种: 利用指定内容、索引以及数据 ? 第三种:通过读取文件,可以是json,csv,excel等等。...这个文件笔者放在代码同目录 第四种:用numpy中array生成 ? 第五种: 用numpy中array,但是行和列名都是numpy数据中来 ? 第六种: 利用tuple合并数据 ?...第七种: 利用pandasseries ?...到此这篇关于pandas创建DataFrame7种方法小结文章就介绍到这了,更多相关pandas创建DataFrame内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    87210

    数据分析EPHS(2)-SparkSQL中DataFrame创建

    本篇是该系列第二篇,我们来讲一讲SparkSQL中DataFrame创建相关知识。 说到DataFrame,你一定会联想到Python Pandas中DataFrame,你别说,还真有点相似。...这个在后面的文章中咱们在慢慢体会,本文咱们先来学习一下如何创建一个DataFrame对象。...通体来说有三种方法,分别是使用toDF方法,使用createDataFrame方法和通过读文件直接创建DataFrame。...3、通过文件直接创建DataFrame对象 我们介绍几种常见通过文件创建DataFrame。包括通过JSON、CSV文件、MySQl和Hive表。...4、总结 今天咱们总结了一下创建SparkDataFrame几种方式,在实际工作中,大概最为常用就是Hive中读取数据,其次就可能是把RDD通过toDF方法转换为DataFrame

    1.5K20

    DataFrame自动化特征抽取尝试

    类型 所谓类型指的是Spark DataFrame 数据是强类型,常见类型有String,Int, Double, Float, Array, VectorUDF等,他们其实可以给我们提供一定信息...不需要分词字段,一般其实就是分类字段。 Int 我们可以求一个distinct,如果很少,很可能是一个分类字段,比如性别,年龄等。Double,Float等则可能是连续,比如可能是金额等。...如果发现有几十万个种类,可能就是售价之类,那么就自然当做连续即可,当时我们可以做一些缺失处理。...系统自动识别这种规则,然后自动进行处理,你唯一需要做就是告知哪些字段要做什么处理。...目前EasyFeature处理方式为: 把所有字段分成 整数类型,浮点类型,字符类型 对浮点类型做缺失处理 对整数做分类和连续区分,分类会被做one-hot化处理 对字符类型区分为分词和不分词

    41430

    总结 | DataFrame、Series、array、tensor创建及相互转化

    最近在入门图像识别,自然也会用到深度学习框架,也接触到了一个数据结构——tensor(张量)。...除此之外,也有一些很常用数据结构,比如DataFrame、Series、array等,这篇文章主要对这几种数据结构创建及相互转换做一个小总结。...创建方法 DataFrame 这里就不在单独贴出每种数据结构示例图,只是简单描述一下各个数据结构特点。DataFrame类似于一个二维矩阵,但它行列都有对应索引。...[在这里插入图片描述] 原理与通过字典创建一致,但需要注意行、索引需要自己指定。...Series Series 可以当成 DataFrame 中一个元素,一索引对应一

    1.1K30

    总结 | DataFrame、Series、array、tensor创建及相互转化

    作者:奶糖猫 来源:喵说Python 最近在入门图像识别,自然也会用到深度学习框架,也接触到了一个数据结构——tensor(张量)。...除此之外,也有一些很常用数据结构,比如DataFrame、Series、array等,这篇文章主要对这几种数据结构创建及相互转换做一个小总结。...创建方法 DataFrame 这里就不在单独贴出每种数据结构示例图,只是简单描述一下各个数据结构特点。DataFrame类似于一个二维矩阵,但它行列都有对应索引。...DataFrame创建方法很多,这里给出比较常用三种方法: 1、通过字典创建 ? 2、通过元组创建 ? 原理与通过字典创建一致,但需要注意行、索引需要自己指定。 3、randn随机生成 ?...np.random.randn(m,n)是生成一个 规格矩阵,行列索引需要自己指定。 Series Series 可以当成 DataFrame 中一个元素,一索引对应一

    2.5K20
    领券