首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

实用的数据分析方法论,给你一个交流圈子和一些资料

在我写了70篇分享文章后,我在简书、数英、梅花网、公众号等平台上拥有了数千名对数据和营销感兴趣的粉丝朋友,成为了数英网优秀作者和热门作者以及简书科技类优秀作者,我的微信朋友圈也因此在扩大。 最近有不少做运营和推广的朋友在问我说,运营和数据到底有什么关系呢?是不是只是根据数据做成excel表格图表就可以了呢? 嗯,如果只是简单地根据数据做成图表,我觉得只是在比肉眼更深一点在看数据,就是在看数据,很多大程度上是表层的,而且是会得到错误的表层信息,那远远不是数据分析。可惜的是,大部分公司都是这样在看数据。 其实,

06
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ICLR 2018 | 阿姆斯特丹大学论文提出球面CNN:可用于3D模型识别和雾化能量回归

    选自arXiv 机器之心编译 参与:李舒阳、许迪 通过类比平面CNN,本文提出一种称之为球面CNN的神经网络,用于检测球面图像上任意旋转的局部模式;本文还展示了球面 CNN 在三维模型识别和雾化能量回归问题中的计算效率、数值精度和有效性。 1 引言 卷积神经网络(CNN)可以检测出图像任意位置的局部模式。与平面图像相似,球面图像的局部模式也可以移动,但这里的「移动」是指三维旋转而非平移。类比平面 CNN,我们希望构造一个神经网络,用于检测球面图像上任意旋转的局部模式。 如图 1 所示,平移卷积或互相关的方法

    08
    领券