首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在没有 Mimikatz 的情况下操作用户密码

在渗透测试期间,您可能希望更改用户密码的常见原因有两个: 你有他们的 NT 哈希,但没有他们的明文密码。将他们的密码更改为已知的明文值可以让您访问不能选择 Pass-the-Hash 的服务。...您没有他们的 NT 哈希或明文密码,但您有权修改这些密码。这可以允许横向移动或特权升级。...一旦离线,Mimikatz可以在不被发现的情况下使用,但也可以使用Michael Grafnetter的 DSInternals 进行恢复。...使用 Impacket 重置 NT 哈希并绕过密码历史 PR 1171 奖励:影子凭证 我们是否需要重置 esteban_da 的密码才能控制它?答案实际上是否定的,我们没有。...如果我们要删除GenericWrite并重新运行BloodHound集合,我们会看到: 额外的 BloodHound 边缘 我们现在看到了四 (4) 个我们以前没有看到的边缘。

2.1K40

V-3-3 在没有vCenter的情况下

在使用vSphere客户端登陆到ESXi服务器的时候,由于没有安装vCenter,而发现无法克隆虚拟机。...而如果要安装vCenter的Windows版,有时候需要创建多台Windows Server主机,这种时候可以通过复制ESXi datastore里的虚拟机文件来创建多台相同的Windows Server...在有vCenter的情况下,可以创建一个模板虚拟机后,右键直接克隆一台虚拟机。或者将虚拟机转换为模板后,以模板创建虚拟机。...如果没有vCenter而现在要创建多台相同的虚拟机的时候可以使用模板来创建虚拟机。 这里说到一个情况是在既没有VCenter和模板的情况下,如何快速复制多台相同的虚拟机。...进入需要复制的模板虚拟机,选中所有的文件并且右键复制。 ? 在新的文件夹中粘贴。 提示:可以进入ssh界面,通过命令行进行复制。

1.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    vAttention:用于在没有Paged Attention的情况下Serving LLM

    从 Paper 的结果来看,从 PagedAttention 切换到 Paper 提出的 vAttention 时,无论是在首 Token 延迟,decode吞吐,Overhead 都明显优于 vLLM...挑战和优化:vAttention 解决了在没有 PagedAttention 的情况下实现高效动态内存管理的两个关键挑战。首先,CUDA API 支持的最小物理内存分配粒度为 2MB。...如果没有,则同步映射所需的页。 0x6.2.2 延迟回收 + 预先分配 我们观察到,在许多情况下,可以避免为新请求分配物理内存。例如,假设请求在迭代中完成,而新请求在迭代中加入运行批次。...在大多数情况下,这些优化确保新到达的请求可以简单地重用先前请求分配的物理内存页。因此,vAttention几乎没有开销,其 prefill 性能与vLLM一样出色。 图11....为了说明不同页大小的结果,图中展示了在请求的 prefill 阶段开始之前同步分配物理内存的开销。

    53110

    在GAN中通过上下文的复制和粘贴,在没有数据集的情况下生成新内容

    在本文中,我将讨论“重写深度生成模型”(https://arxiv.org/abs/2007.15646)一文,该文件可直接编辑GAN模型,以提供所需的输出,即使它与现有数据集不匹配也是如此。...但是,如果我们想要眉毛浓密或第三只眼的脸怎么办?GAN模型无法生成此模型,因为在训练数据中没有带有浓密眉毛或第三只眼睛的样本。...快速的解决方案是简单地使用照片编辑工具编辑生成的人脸,但是如果我们要生成大量像这样的图像,这是不可行的。因此,GAN模型将更适合该问题,但是当没有现有数据集时,我们如何使GAN生成所需的图像?...与其让模型根据训练数据或标签进行优化,不如直接设置我们要保留的规则(参数)以提供期望的结果。想要戴上头盔吗?没问题。我们可以复制头盔的特征并将其放在马头特征上。...总之,获得更新权重W1的步骤是 结果 该研究已尝试重写预训练的StyleGAN和ProGAN模型以证明其功能。

    1.7K10

    在没有训练数据的情况下通过领域知识利用弱监督方法生成NLP大型标记数据集

    弱监督使用标签模型创建的标签数据集来训练下游模型,下游模型的主要工作是在标签模型的输出之外进行泛化。如Snorkel论文所述,在数据集上实现弱监督有三个步骤。...在二元分类问题的情况下,标签为0(不存在标签)或1(标签的存在)或-1(信息不足,不标记)。...投票模型是将多个LF汇总到单个标签的最简单方法。但是还有更好的方法可以通过从整个M行的各个LF之间的相同结果和不同结果中学习的聚合方法。...从上图也能够看到没有单标签模型(LM)框架始终优于其他框架,这表明我们必须在数据集中尝试不同的LMS才能选择最佳的LMS。...在两步弱监督方法中结合这些框架,可以在不收集大量手动标记训练数据集的情况下实现与全监督ML模型相媲美的准确性! 引用: Want To Reduce Labeling Cost?

    1.3K30

    在没有数据的情况下使用贝叶斯定理设计知识驱动模型

    只有结合起来才能形成专家知识的表示。 贝叶斯图是有向无环图(DAG) 上面已经提到知识可以被表示为一个系统的过程可以看作一个图。在贝叶斯模型的情况下,图被表示为DAG。但DAG到底是什么?...总的来说,我们需要指定4个条件概率,即一个事件发生时另一个事件发生的概率。在我们的例子中,在多云的情况下下雨的概率。因此,证据是多云,变量是雨。...这里我们需要定义在多云发生的情况下喷头的概率。因此,证据是多云,变量是雨。我能看出来,当洒水器关闭时,90%的时间都是多云的。...在洒水器关闭的情况下,草地湿润的可能性有多大? P(Wet_grass=1 |Sprinkler=0)= 0.6162 如果洒器停了并且天气是多云的,下雨的可能性有多大?...有系统地问问题:首先设计具有节点和边的图,然后进入cpt。在讨论可能性时要谨慎。了解专家如何得出他的概率并在需要时进行标准化。检查时间和地点是否会导致不同的结果。在构建模型之后进行完整性检查。

    2.2K30

    NeurIPS 2023 | 在没有自回归模型的情况下实现高效图像压缩

    :最后,通过在相关性图上应用 L_2 范数来计算相关性损失,这一损失衡量了模型中潜在变量之间在空间上的解相关程度。...Vimeo-90k数据集 测试集:Kodak数据集 基线模型使用公式 (4) 中给出的损失函数进行训练,具有相关性损失的模型使用公式 (5) 中修改后的损失函数进行训练。...图5 图像重建质量的可视化结果 图6 空间相关性图的比较 图5和图6分别是图像重建质量和空间相关性的可视化结果。如图6所示,应用了本文的方法之后,潜在变量空间位置上的相关性明显降低了,空间冗余更少。...消融实验 图7 不同α值对实验结果的影响 图8 不同mask类型对实验结果的影响 图9 窗口大小对实验结果的影响 作者进行了三组消融实验,包括 α 值的大小,mask 类型和相关性图的窗口大小,实验结果分别如图...实验表明,本文所提出的方法在不修改熵模型和增加推理时间的情况下,显著提高了率失真性能,在性能和计算复杂性之间取得了更好的 trade-off 。

    50110

    在没有 try-with-resources 语句的情况下使用 xxx 是什么意思

    在没有使用 try-with-resources 语句的情况下使用 xxx,意味着在代码中没有显式地关闭 xxx对象资源,如果没有使用 try-with-resources,那么在使用xxx对象后,需要手动调用...语句中,可以自动管理资源的关闭。...使用 try-with-resources 语句时,可以在 try 后面紧跟一个或多个资源的声明,这些资源必须实现了 AutoCloseable 或 Closeable 接口。...在 try 代码块执行完毕后,无论是否发生异常,都会自动调用资源的 close() 方法进行关闭。...使用 try-with-resources 可以简化资源释放的代码,并且能够确保资源在使用完毕后得到正确关闭,避免了手动关闭资源可能出现的遗漏或错误。

    4.3K30

    神兵利器 - 在没有任何权限的情况下破解任何 Microsoft Windows 用户密码

    PoC 测试场景(使用访客账户) 在 Windows 10 上测试 安装和配置新更新的 Windows 10 虚拟机或物理机。...在我的情况下,完整的 Windows 版本是:1909 (OS Build 18363.778) 以管理员身份登录并让我们创建两个不同的帐户:一个管理员和一个普通用户。两个用户都是本地用户。 /!...默认情况下,域名是%USERDOMAIN%env var 指定的值。...破解第一个用户:(darkcodersc管理员) 提示(客人)>WinBruteLogon.exe -v -u darkcodersc -w 10k-most-common.txt 等待几秒钟以查看以下结果...00:06 破解第二个用户:(HackMe普通用户) 提示(客人)>WinBruteLogon.exe -v -u HackMe -w 10k-most-common.txt 等待几秒钟以查看以下结果

    1.7K30

    mysql,SQL标准,多表查询中内连接,外连接,自然连接等详解之查询结果集的笛卡尔积的演化

    需要强调,表的连接所依据的关系是在where子句中定义的。在实际应用中,用户要实现表的连接必然要依据一定的关系。 如果不指明连接关系,即不使用where子句。...而后执行where子句,在中间表中,搜索S2中成绩低于60的学生的记录,同时要求记录中S1与S2是同一个学生的记录即学号相同。最后执行select语句,从中间表获取S1中相应的信息作为结果表。...简单来说,中间表是没有重复记录的,但是S1部分字段是有重复的,而结果集提取的只是S1部分的字段,因此就有可能有重复记录。 一般情况,自连接也可以使用子查询的方式实现。...缺点是,虽然可以指定查询结果包括哪些列,但是不能人为地指定哪些列被匹配。另外,自然连接的一个特点是连接后的结果表中匹配的列只有一个。如上,在自然连接后的表中只有一列C。...换句话说,如果任何一个源表中的行在另一个源表中没有匹配,DBMS将把该行放在最后的结果表中。

    2.5K20

    谷歌AI在没有语言模型的情况下,实现了最高性能的语音识别

    谷歌AI研究人员正在将计算机视觉应用于声波视觉效果,从而在不使用语言模型的情况下实现最先进的语音识别性能。...研究人员表示,SpecAugment方法不需要额外的数据,可以在不适应底层语言模型的情况下使用。 谷歌AI研究人员Daniel S....Park和William Chan表示,“一个意想不到的结果是,即使没有语言模型的帮助,使用SpecAugment器训练的模型也比之前所有的方法表现得更好。...虽然我们的网络仍然从添加语言模型中获益,但我们的结果表明了训练网络在没有语言模型帮助下可用于实际目的的可能性。” ?...根据普华永道2018年的一项调查显示,降低单词错误率可能是提高会话AI采用率的关键因素。 语言模型和计算能力的进步推动了单词错误率的降低,例如,近年来,使用语音输入比手动输入更快。 ? End

    96070

    在没有技术术语的情况下介绍Adaptive、GBDT、XGboosting等提升算法的原理简介

    假设你正在准备SAT考试,考试分为四个部分:阅读、写作、数学1(没有计算器)、数学2(没有计算器)。为了简单起见,假设每个部分有15个问题需要回答,总共60个问题。...它使用下面的公式来决定它的最终结果。 ? 括号内的所有内容反映了模型给出正确预测的可能性。例如,对于stump 1来说,给出正确预测的概率是错误预测的5倍。 神奇之处在于log部分。...但通常我们将max_depth限制在6到8之间,以避免过拟合。Gradientboost不使用树桩,因为它没有使用树来检测困难的样本。它构建树来最小化残差。...当面对大型数据集时,这个过程可能非常耗时。 因此,XGboost又向前推进了一步。它没有使用预估器作为树节点。它构建树来将残差进行分组。就像我之前提到的,相似的样本会有相似的残值。...然而,当我们有一个合理数量的样本,比如几千个,Gradientboost实际上是更健壮的。所以在一些小的数据集的时候我们可以首先使用Gradientboost。

    90710

    怎么在没有专业UI的情况下设计出一个美观的工业组态界面?

    在目前的工控行业里面,软硬件发展的都比较成熟,工程师们能够独立完成功能,然而在现在竞争日益激烈的情况下,无论是触摸屏还是PC机,因为直观的展示了项目的全貌,软件界面显得愈发重要。...那么怎么在没有专业UI的情况下设计出一个美观的界面呢? 下面分享一下我的设计思路,希望对大家有所帮助。在我看来,组态界面的设计包含:框架、颜色、页面、字体、图标、图形这几个部分。...以我的经验来看,当采用工控显示器1920*1080的分辨率时,采用上下结构时,上部尺寸保持在105较好,按钮切换这部分尺寸在60左右,剩余主体窗口的尺寸为975左右。...当采用1680*1050分辨率时,采用上下结构时,上部尺寸保持在100,用户切换尺寸在60左右,剩余主体窗口的尺寸为950左右。...,并放置在新图层里面。

    1.2K10

    尽量减少网站域名在没有启用 CDN 情况下的各种检测、扫描、测速等操作

    今天明月给大家分享个比较可怕的事儿,那就是轻松获取你站点服务器真实 IP 的途径和办法,很多小白站长不知道自己服务器真实 IP 的重要性,因此一些不好的习惯就会暴露你的真实 IP 到网上,从而造成被各种恶意扫描和爬虫抓取骚扰...这个原理其实很简单,就是通过获取你的域名解析记录来侧面获取到你的真是 IP,有不少的第三方代理就可以扫描你的域名来获取到这些数据,不说是百分百的准确吧,至少有 80%的概率可以的,通过明月的分析,这些数据大部分依赖于平时网上各种的所谓...SEO 分析平台、互换友链平台等等,甚至不少的测速平台的数据都会被利用到,像有些所谓的安全检查扫描一类的也会获取到这里数据。...这几乎是一种没有任何成本和技术门槛的手法就可以轻松获取到服务器真实的 IP 了,这也再次说明了给自己的站点加个 CDN 来隐藏真实 IP 的重要性,甚至可以说在没有 CDN 的情况下,尽量的不要去检测自己域名的速度...、SEO 信息查询等等操作,至于那些所谓的交换友链、自动外链的所谓 SEO 插件就更要远离了,基本上明月碰到的没有几个是正常的,总之各位是要小心谨慎了!

    1.1K20

    研究人员开发机器学习算法,使其在没有负面数据的情况下进行分类

    来自RIKEN Center高级智能项目中心(AIP)的研究团队成功开发了一种新的机器学习方法,允许AI在没有“负面数据”的情况下进行分类,这一发现可能会在各种分类任务中得到更广泛的应用。...就现实生活中的项目而言,当零售商试图预测谁将购买商品时,它可以轻松地找到已经购买商品的客户的数据(正面数据),但基本上不可能获得没有购买商品的客户的数据(负面数据),因为他们无法获得竞争对手的数据。...然后他们在“T恤”照片上附上了置信分数。他们发现,如果不访问负面数据,在某些情况下,他们的方法与一起使用正面和负面数据的方法一样好。 Ishida指出,“这一发现可以扩展可以使用分类技术的应用范围。...即使在正面使用机器学习的领域,我们的分类技术也可以用于新的情况,如由于数据监管或业务限制数据只能收集正面数据的情况。...在不久的将来,我们希望将此技术应用于各种研究领域,如自然语言处理,计算机视觉,机器人和生物信息学。”

    81640

    混合模式程序集是针对“v2.0.50727”版的运行时生成的,在没有配置其他信息的情况下,无法在 4.0 运行时中加载该...

    今天在把以前写的代码生成工具从原来的.NET3.5升级到.NET4.0,同时准备进一步完善,将程序集都更新后,一运行程序在一处方法调用时报出了一个异常: 混合模式程序集是针对“v2.0.50727”版的运行时生成的...,在没有配置其他信息的情况下,无法在 4.0 运行时中加载该程序集 其调用的方法是从sqlite数据库中获取原来已经使用过的数据库连接,当时也没注意,就是准备设断点然后单步调试,结果竟然是断点无法进入方法体内...),而目前官方也没有给出最新的.NET4的数据访问支持。...,.NET3.5的时候,由于程序运行环境本质还是.NET2.0,而到了.NET4.0由于整个程序集的版本更新,以前使用.NET2.0所编写的程序集与.NET4.0的程序集继续拧互操作的时候就会出现上面所说的兼容性问题...4 激活策略,该激活策略将加载 .NET Framework 4 通过使用公共语言运行时 (CLR) 版本 4 所创建的程序集,以及 CLR 早期版本通过使用受支持的低于版本 4 的最高 CLR 版本所创建的程序集

    2.3K100

    在没有源代码的情况下对Linux二进制代码进行模糊测试

    在drAFL的帮助下,我们就可以在没有源代码的情况下对LInux二进制代码进行模糊测试了。 ?...drAFL 原始版本的AFL支持使用QEMU模式来对待测目标进行黑盒测试,因此在使用drAFL之前,作者强烈建议大家先尝试使用一下原始版本的AFL,如果达不到各位的目标,再来使用drAFL。...除此之外,你还需要设置AFL的fork服务器(AFLNOFORKSRV=1),或者设置“AFLSKIPBIN_CHECK=1”。具体请参考代码构建部分的第五步。...注意:请注意,针对64位代码库,你需要使用64位的DynamoRIO,如果使用的是32位的代码库,你就需要使用32位的DynamoRIO了,否则工具将无法正常运行。.../afl_test @@ 注意:对于afl_test测试样例,可能需要大概25-30秒的执行时间。

    1.6K10

    学习Python与Excel:使用xlwt在没有Excel的情况下编写电子表格

    首先,使用pip命令在终端安装xlwt: pip install xlwt 下面是一个示例。...原始的文本文件数据如下: 09700RESEARCH 09800PHYSICIANS PRIVATE OFFICES 09900NONPAID WORKERS MANAGEMENT FEES REFERENCE...LABS 原始数据被搅和在一起,账号和类别没有分开,有些数据甚至没有账号。...图1 要创建这样的输出,代码脚本执行以下操作: 1.分隔帐号和名称 2.分配一个99999的帐号,并将未编号帐号的单元格颜色设置为红色 3.将帐户名转换为正确的大写名称 4.删除帐户名中的任何多余空格...5.将账号和姓名写入电子表格中的两列 6.根据最宽数据的宽度设置每个电子表格列的列宽格式 代码如下: import sys import re from xlwt import Workbook, easyxf

    1.8K20
    领券