dplyr包在数据变换方面非常的好用,它有很多易用性的体现:比如书写数据内的变量名时不需要引号包裹,也不需要绝对引用,而这在多数baseR函数中都不是这样的,比如:
如今数据分析如火如荼,R与Python大行其道。你还在用Excel整理数据么,你还在用spss整理数据么。
数据科学主要以统计学、机器学习、数据可视化等,使用工具将原始数据转换为认识和知识(可视化或者模型),主要研究内容包括数据导入、数据转换、可视化、构建模型等。当前R语言和Python是两门最重要的数据科学工具,本系列主要介绍R和Python在数据导入、数据转换、可视化以及模型构建上的使用。整个系列会按照数据转换、可视化、数据导入、模型构建进行介绍。在数据转换和可视化模块中,R和Python有很多相近的语法代码。
将你的数据整理好是一个可敬的、某些情况下是至关重要的技能,所以作者使用了数据木匠这个词。这是本书最重要的一章,将涉及以下内容:
R包直接在Rstudio页面下载的3大来源:官网CRAN、Biocductor、github
同时对数据框的多列执行相同的函数操作经常有用,但是通过拷贝和粘贴的方式进行的话既枯燥就容易产生错误。
tibble 是一种简单数据框,它对传统数据框的功能进行了一些修改,其所提供的简单数据框更易于在 tidyverse 中使用。
由于业务中接触的数据量很大,于是不得不转战开始寻求数据操作的效率。于是,data.table这个包就可以很好的满足对大数据量的数据操作的需求。
熟悉R的朋友都会知道, dplyr包是对原始的数据集进行清洗、整理以及变换的有力武器之一。但是其使用会局限于你需要有打开R/R studio或者通过R脚本来执行 dplyr。对于这个问题,今天即将需要介绍的 dplyr-cli就能很好的解决这个问题。
本期“大猫的R语言公众号”由“村长”供稿。村长,数据科学、指弹吉他及录音工程爱好者,浙大金融学博士在读,在data.table包和MongoDB的使用上有较多经验。
假设数据以 tibble 格式保存。数据集如果用于统计与绘图,需要满足一定的格式要求,(Wickham, 2014) 称之为 整洁数据 (tidy data),基本要求是每行一个观测,每列一个变量,每个单元格恰好有一个数据值。这些变量应该是真正的属性,而不是同一属性在不同年、月等时间的值分别放到单独的列。
这个包以一种统一的规范更高效地处理数据框。dplyr 包里处理数据框的所有函数的第一个参数都是数据框名。
单细胞代码解析-妇科癌症单细胞转录组及染色质可及性分析1:https://cloud.tencent.com/developer/article/2055573
做数据分析以及制作表格的时候,会遇到长宽格式数据之间相互转换的问题,之前介绍了如果在Hive是使用sql语句实现,现介绍一下如何在R语言中实现长宽格式数据相互转换。
Tidyverse 是 Rstudio 公司推出的专门使用 R 进行数据分析的一整套工具集合,里面包括了readr,tidyr, dplyr,purrr,tibble,stringr, forcats,ggplot2 等包。https://github.com/tidyverse/
方差分析(ANOVA)是一种统计方法,用于比较两组或多组数据之间的均值差异。在R语言中,实现方差分析主要涉及到以下步骤:
在分析之前,先将数据集 birthwt 中的分类变量 low、race、smoke、ht 和 ui 转换成因子。
数据可视化仪表盘是将数据直观呈现并提供交互性的强大工具。R语言与Shiny框架的结合,使得创建交互式数据可视化仪表盘变得轻松而灵活。在这篇博客中,我们将深入介绍如何使用R和Shiny创建一个简单而实用的数据可视化仪表盘。
翻译 | 刘朋 Noddleslee 程思婕 余杭 整理 | 凡江
要纵向合并两个数据框,可以使用 rbind( )函数。被合并的两个数据框必须拥有相同的变量,这种合并通常用于向数据框中添加观测。例如:
但是参与的玩家多了之后,也会出现一些冲突。最近在运行一些三五年前的代码报错了,引发了我的思考。
在做数据分析时,常常遇到的一个场景是,1,2,3 需要转换成其对应的"a","b","c"。比如在对结果进行分类统计的时候。
在对数据进行可视化之前我们往往需要进行数据转换以得到可视化所需要的数据内容与格式。这里我们使用dplyr包操作2013年纽约市的航班起飞数据集(2013)。
2023-11-10,Galaxy生信云平台 UseGalaxy.cn 新增 12 个工具。
tidyverse就是Hadley Wickham将自己所写的包整理成了一整套数据处理的方法,包括ggplot2、dplyr、tidyr、readr、purrr、tibble、stringr、forcats。出版有《R for Data Science》(中文版《R数据科学》),这本书详细介绍了tidyverse的使用方法。
汇总函数 summarise(),可以将数据框折叠成一行 ,多与group_by()结合使用
大型数据集通常是高度结构化的,结构使得我们可以按不同的方式分组,有时候我们需要关注单个组的数据片断,有时需要聚合不同组内的信息,并相互比较。
大数据文摘作品,转载要求见文末 作者 | NSS 编译 | 张伯楠,刘云南 弋心,卫青,宁云州 R语言是数据科学领域最流行的语言之一。如果你真想从事数据科学事业,那你要么已经会用R语言要么正在学习它。R语言同样是一个拥有广泛的统计和数据科学库的生态系统。为了帮助数据科学家测试他们的R语言能力,我们为DataFest 2017设计了一部分技能测试题。 超过1500人注册了这项考试并有接近500人完成了测试。下图是不同测试者的成绩分布: 下面是关于成绩分布的一些统计数据: 平均分:16.69 分数中值:19
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")):
上面的例子summary的变量是disp,分组变量是cyl和am,使用三个点这里传递了任意个参数
部分人可能会因为镜像的问题失败,解决方法https://mp.weixin.qq.com/s/XvKb5FjAGM6gYsxTw3tcWw
DataFrame DataFrame 是一个表格或者类似二维数组的结构,它的各行表示一个实例,各列表示一个变量。 一. DataFrame数据流编程 二. 数据读取 readr/httr/DBI 1
针对某个科学问题,通常会在一段时间内对多个同一研究对象进行多次或重复测量,这类数据一般称为纵向数据。纵向数据具有两个特点,一是研究对象重复;二是观察值可能存在缺失值。上述两个因素导致在探索结果和观测指标相关性分析时,一般线性(linear regression model)或广义线性模型(generalized regression model)以及重复测量方差分析(repeated ANOVA)均不适用。因此,广义估计方程(generalized estimating equations,GEE) 和混合线性模型(mixed linear model,MLM) 被广泛应用于纵向数据的统计分析。
tibble 是一种简单数据框,相对于传统的data.frame做出了一些修改。tibble 包是tidyverse 的核心 R 包,其所提供的简单数据框更易于 在 tidyverse 中使用。
数据分析有一半以上的时间会花在对原始数据的整理及变换上,包括选取特定的分析变量、汇总并筛选满足条件的数据、排序、加工处理原始变量并生成新的变量、以及分组汇总数据等等。这一点,我想大部分使用EXCEL的童鞋都深有体会,写论文时,这么多的数据进行处理,手动汇总、筛选、变换,工作量实在是太大。而本文介绍的dplyr包简直就是Hadley Wickham (ggplot2包的作者,被称作“一个改变R的人”)大神为我们提供的“数据再加工”神器啊。 本文试图通过一个案例,对神奇的dplyr包的一些常用功能做简要介绍
写在前面:公众号又被我搁置好久,闲来无事,写写近期学的R语言吧,主要分为两个部分写,一主要为数据处理,二为ggplot作图。这两个部分将生信分析的绝大多数常用命令都讲到了,作为R语言入门是够用的,但是学海无涯,以此只是作为一个引子,想要进步还是要自己多学多练,举一反三才行。
很多人推荐《R语言实战》这本书来入门R,当然,这本书非常不错,我也是通过这本书开始接触的R。这种入门的学习路径属于base R first,学习的流程基本是先了解变量的类型、数据的结构,再深入点就会学到循环与自定义函数。有些类似于先认识编程,再按照数据处理、可视化、统计分析等应用方向开始下一个学习的旅程。
-(3)注意:之前提到过,矩阵的某一列不能单独转换数据类型,需要把矩阵转换成数据框再转换某列的数据类型;或者把这列单独提取出来再转换其数据类型;
在R中,library函数的表现有点特殊,传给它的参数变量不是类似于常规R表达式的即时执行,而是像是被‘冻结’了一样。
何品言翻译,广东科技学院大学生,喜欢R语言和数据科学。 王陆勤审核,从事数据挖掘工作,专注机器学习研究与应用。 英文链接:http://www.r-bloggers.com/how-to-learn-r-2/ PPV课原创翻译文章,转载请注明以上信息及原文链接! 数据操作 把原始数据转换成具有一定结构的数据对于健壮性分析是很重要的,对是数据符合处理也是很重要的。R有很多的构建函数对原始数据进行处理,但是不是每个时候都能轻而易举的使用它们。幸运的是,有几个R包可以提供很大的帮助: tidyr包允许你对数据
有4个函数可以使用三方包的功能(函数、数据等),基于它们是否加载(Load)或绑定(attach),找不到包时的反馈而有所不同。
本篇描述了如何计算R中的数据框并将其添加到数据框中。一般使用dplyr R包中以下R函数:
这个函数的主要目的是生成每个文本标签在圆上的坐标和角度,以便它们可以围绕圆形排列。它使用以下步骤完成
列表书写顺序决定了最终合成列表中列的顺序,每列数值的类型必须相同;以"by"的列为标准,补齐列表,空值为"NA"
尽管Excel在职场和学术界非常流行,但对于一些高级的统计分析、数据可视化、大规模数据处理等任务,可能需要更专业的软件或编程语言,如R、Python、SAS或Stata。此外,对于特定的行业或研究领域,可能会有其他更适合的工具和平台。
dplyr的函数由于使用tidy evaluation(R中的一种非标准执行(NSE)实现方式)的方法,可以使得其具有更好的易用性:变量不需要绝对引用和引号包裹。
我们知道,R语言学习,80%的时间都是在清洗数据,而选择合适的数据进行分析和处理也至关重要,如何选择合适的列进行分析,你知道几种方法?
本文的写作由来是知识星球一个朋友对如何在 tidyverse 系列包中使用公式函数(单侧公式)不太熟悉,所以通过本文分享一下我的心得。
inner_join()函数和merge()函数都用于将两个数据框按照某些共同的列进行合并,但它们有一些区别:
领取专属 10元无门槛券
手把手带您无忧上云