首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数学建模--蒙特卡罗随机模拟

蒙特卡罗方法(Monte Carlo Method)是一种基于随机抽样和统计模拟的数值计算技术,广泛应用于数学建模、优化问题、概率密度函数积分等领域。...其理论基础是大数定律,即通过大量重复试验来估计事件发生的频率作为其概率的近似值。 蒙特卡罗方法的基本原理 蒙特卡罗方法的核心思想是利用随机数生成和统计模拟来进行数值计算。...蒙特卡罗方法在数学建模中的具体应用案例非常广泛,以下是一些具体的实例: 蒙特卡罗方法可以用来模拟掷硬币的实验。例如,通过模拟掷硬币5000次,来验证正面向上的概率始终为1/2。...粒子滤波是一种基于蒙特卡罗方法的技术,用于提高非线性动态系统的状态估计和预测精度。...蒙特卡罗方法与其他数值计算技术(如有限元分析、遗传算法)相比,有哪些独特优势和局限性? 蒙特卡罗方法(Monte Carlo Method)是一种基于随机数的计算技术,广泛应用于各种复杂问题的求解。

16010

使用蒙特卡罗模拟的投资组合优化

在金融市场中,优化投资组合对于实现风险与回报之间的预期平衡至关重要。蒙特卡罗模拟提供了一个强大的工具来评估不同的资产配置策略及其在不确定市场条件下的潜在结果。...我们的目标是开发一个蒙特卡罗模拟模型的投资组合优化。参与者将被要求构建和分析由各种资产类别(例如,股票,债券和另类投资)组成的投资组合,以最大化预期回报,同时管理风险。...使我们能够看到资产或公司在最佳表现的投资组合中是如何分配的。 使用蒙特卡罗模拟未来的价格预测 所提供的代码片段引入了一个名为monte_carlo的函数,该函数使用蒙特卡罗方法来模拟股票的未来价格。...在蒙特卡罗模拟的前提下,如果方差较小,生成的随机路径将较少微分,如果方差较大,则产生更平坦的曲线,则生成的随机路径将更多。 monte_carlo函数使用蒙特卡罗方法生成指定天数的模拟股票价格。...通过这样做,代码提供了对Twitter股票未来价格范围的潜在洞察,这是由蒙特卡洛模拟确定的。 所提供的代码构造了一个直方图来说明从蒙特卡洛模拟中得到的Twitter股票模拟价格的分布。

58840
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何通过Python实现蒙特卡罗模拟算法

    本文主要介绍蒙特卡罗模拟算法,以及如何通过Python来模拟问题。 什么是蒙特卡罗(Monte Carlo)方法?...蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,是通过使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解...案例1: image.png 的计算 如何使用蒙特卡罗方法计算圆周率 image.png ?...按照蒙特卡罗模拟的思想,我们可以计算有多少点落在积分范围内(判断条件高度 image.png ),落在阴影范围内的点数跟所有抽样点数的比值就是所要求的积分值。...接着,通过3个简单的案例讲解了如何使用Python实现蒙特卡罗模拟算法。 说明:本文问题来源于网易云课堂的数据分析师(python)课程。

    3K20

    用于时间序列概率预测的蒙特卡罗模拟

    蒙特卡罗模拟这个名称源自于摩纳哥王国的蒙特卡罗城市,这里曾经是世界著名的赌博天堂。在20世纪40年代,著名科学家乌拉姆和冯·诺依曼参与了曼哈顿计划,他们需要解决与核反应堆中子行为相关的复杂数学问题。...他们受到了赌场中掷骰子的启发,设想用随机数来模拟中子在反应堆中的扩散过程,并将这种基于随机抽样的计算方法命名为"蒙特卡罗模拟"(Monte Carlo simulation)。...蒙特卡罗模拟的核心思想是通过大量重复随机试验,从而近似求解分析解难以获得的复杂问题。它克服了传统数值计算方法的局限性,能够处理非线性、高维、随机等复杂情况。...随着计算机性能的飞速发展,蒙特卡罗模拟的应用范围也在不断扩展。 在金融领域,蒙特卡罗模拟被广泛用于定价衍生品、管理投资组合风险、预测市场波动等。...此外,蒙特卡罗模拟还在机器学习、计算生物学、运筹优化等领域发挥着重要作用。 蒙特卡罗模拟的过程基本上是这样的: 定义模型:首先,需要定义要模拟的系统或过程,包括方程和参数。

    35810

    强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)

    简单蒙特卡罗搜索     首先我们看看基于模拟的搜索中比较简单的一种方法:简单蒙特卡罗搜索。     ...简单蒙特卡罗搜索基于一个强化学习模型$M_v$和一个模拟策略$\pi$.在此基础上,对于当前我们要选择动作的状态$S_t$, 对每一个可能采样的动作$a \in A$,都进行$K$轮采样,这样每个动作$...但是假如我们的状态动作数量达到非常大的量级,比如围棋的级别,那么简单蒙特卡罗搜索也太慢了。...同时,由于使用蒙特卡罗法计算其动作价值函数,模拟采样得到的一些中间状态和对应行为的价值就被忽略了,这部分数据能不能利用起来呢?      ...MCTS的原理     MCTS摒弃了简单蒙特卡罗搜索里面对当前状态$S_t$每个动作都要进行K次模拟采样的做法,而是总共对当前状态$S_t$进行K次采样,这样采样到的动作只是动作全集$A$中的一部分。

    1.3K30

    六西格玛与商业分析:蒙特卡罗模拟

    图片什么是蒙特卡罗模拟?根据定义,蒙特卡罗模拟是一种评估特定结果可能性的数学工具。通过使用问题解决和风险评估技术,它可以估算特定结果的风险。该模拟使用多种数据输入,是大多数领域和行业的理想选择。...更重要的是,蒙特卡罗模拟让您深入了解最有可能、最不可能和一般情况的结果。当您有诸如“这项投资会产生高回报吗?”之类的问题或者“这个项目有多贵?”,蒙特卡罗可以计算出近似的预测。如何使用蒙特卡罗模拟?...与大多数六西格玛工具一样,蒙特卡罗在很大程度上取决于您提供的数据。在大多数情况下,数据越多越好。有了额外的数据和多个变量,模拟就更容易为您提供精确的估计。使用此模拟工具时,您正在构建可能结果的模型。...六西格玛和蒙特卡罗尽管蒙特卡罗模拟是大多数专业人士的理想工具,但它并非万无一失。提供错误的数据、不准确的变量或不切实际的范围不会提供最准确的结果。这就是六西格玛发挥作用的地方。...同样,您也有管理为您的项目收集数据的其他六西格玛员工的经验。使用蒙特卡罗时,您应该使用历史结果来创建最真实的测试范围。同样,将您的模拟结果与过去的经验进行比较可以帮助确定您是否正确运行了程序。

    28730

    蒙特卡罗Monte Carlo模拟计算投资组合的风险价值(VaR)

    p=22862 如何使用Python通过蒙特卡洛模拟自动计算风险值(VaR)来管理投资组合或股票的金融风险。 金融和投资组合风险管理中的VaR?...蒙特卡洛模拟 蒙特卡洛模型是Stanislaw Ulam和John Neumann的心血结晶,他们在第二次世界大战后开发了这个模型。...该模型是以摩纳哥的一个赌博城市命名的,这是因为赌博中存在机会和随机性。 蒙特卡洛模拟是一个概率模型,它使用产生的随机变量与经济因素(期望收益率、波动率),来预测结果。...我们现在使用蒙特卡洛模拟为资产组合生成一组预测收益,找出投资的风险值。...这可以通过将产生的每日收益值与各自股票的最终价格相乘来实现。 ---- 本文摘选《Python蒙特卡罗(Monte Carlo)模拟计算投资组合的风险价值(VaR)》

    4.2K20

    时间序列的蒙特卡罗交叉验证

    交叉验证应用于时间序列需要注意是要防止泄漏和获得可靠的性能估计本文将介绍蒙特卡洛交叉验证。这是一种流行的TimeSeriesSplits方法的替代方法。...时间序列交叉验证 TimeSeriesSplit通常是时间序列数据进行交叉验证的首选方法。下图1说明了该方法的操作方式。可用的时间序列被分成几个大小相等的折叠。...TimeSeriesSplit的主要缺点是跨折叠的训练样本量是不一致的。这是什么意思? 假设将该方法应用于图1所示的5次分折。在第一次迭代中,所有可用观测值的20%用于训练。...因此,初始迭代可能不能代表完整的时间序列。这个问题会影响性能估计。 那么如何解决这个问题? 蒙特卡罗交叉验证 蒙特卡罗交叉验证(MonteCarloCV)是一种可以用于时间序列的方法。...这个原点标志着训练集的结束和验证的开始。在TimeSeriesSplit的情况下,这个点是确定的。它是根据迭代次数预先定义的。 MonteCarloCV最初由Picard和Cook使用。

    1.2K40

    一文学习基于蒙特卡罗的强化学习方法

    ▌4.1 基于蒙特卡罗方法的理论 本章我们学习无模型的强化学习算法。 强化学习算法的精髓之一是解决无模型的马尔科夫决策问题。如图4.1所示,无模型的强化学习算法主要包括蒙特卡罗方法和时间差分方法。...▌4.3 基于Python的编程实例 在这一节中,我们用Python和蒙特卡罗方法解决机器人找金币的问题。 蒙特卡罗方法解决的是无模型的强化学习问题,基本思想是利用经验平均代替随机变量的期望。...因此,利用蒙特卡罗方法评估策略应该包括两个过程:模拟和平均。 模拟就是产生采样数据,平均则是根据数据得到值函数。下面我们以利用蒙特卡罗方法估计随机策略的值函数为例做详细说明。...1.随机策略的样本产生:模拟 图4.10为蒙特卡罗方法的采样过程。该采样函数包括两个大循环,第一个大循环表示采样多个样本序列,第二个循环表示产生具体的每个样本序列。...图(4.10)和图(4.11)中的Python代码合起来组成了基于蒙特卡罗方法的评估方法。下面,我们实现基于蒙特卡罗的强化学习算法。

    2.3K50

    拓端tecdat|Python蒙特卡罗(Monte Carlo)模拟计算投资组合的风险价值(VaR)

    p=22862 原文出处:拓端数据部落公众号 如何使用Python通过蒙特卡洛模拟自动计算风险值(VaR)来管理投资组合或股票的金融风险。 金融和投资组合风险管理中的VaR?...蒙特卡洛模拟 蒙特卡洛模型是Stanislaw Ulam和John Neumann的心血结晶,他们在第二次世界大战后开发了这个模型。...该模型是以摩纳哥的一个赌博城市命名的,这是因为赌博中存在机会和随机性。 蒙特卡洛模拟是一个概率模型,它使用产生的随机变量与经济因素(期望收益率、波动率),来预测结果。...我们现在将使用蒙特卡洛模拟为我们的资产组合生成一组预测收益,这将有助于我们找出我们投资的风险值。...---- 最受欢迎的见解 1.R语言基于ARMA-GARCH-VaR模型拟合和预测实证研究 2.R语言时变参数VAR随机模型 3.R语言估计时变VAR模型时间序列的实证研究 4.R语言基于ARMA-GARCH

    1.5K30

    【视频】风险价值VaR原理与Python蒙特卡罗Monte Carlo模拟计算投资组合实例|附代码数据

    这种方法假设收益和损失是正态分布的。 最后一种方法是进行蒙特卡罗模拟。该技术使用计算模型来模拟数百或数千次可能迭代的期望收益。...蒙特卡洛模拟是指任何随机生成试验的方法,但它本身并没有告诉我们任何有关基础方法的信息 。 对于大多数用户来说,蒙特卡洛模拟相当于一个随机、概率结果的“黑匣子”生成器。...在不深入细节的情况下,我们根据其历史交易模式进行了蒙特卡罗模拟。在我们的模拟中,进行了 700 次试验。如果我们再次运行它,我们会得到不同的结果——尽管差异很可能会缩小。...这意味着最差的7个结果(即最差的 1%)低于 -5%。因此,蒙特卡罗模拟得出以下 VaR 类型的结论:在 99% 的置信度下,我们预计在任何给定月份的损失不会超过 5%。...这可以通过将产生的每日收益值与各自股票的最终价格相乘来实现。 本文选自《Python蒙特卡罗(Monte Carlo)模拟计算投资组合的风险价值(VaR)》。

    63700

    【视频】风险价值VaR原理与Python蒙特卡罗Monte Carlo模拟计算投资组合实例|附代码数据

    这种方法假设收益和损失是正态分布的。最后一种方法是进行蒙特卡罗模拟。该技术使用计算模型来模拟数百或数千次可能迭代的期望收益。历史方法历史方法只是重新组织实际的历史收益,将它们从最差到最好的顺序排列。...在不深入细节的情况下,我们根据其历史交易模式进行了蒙特卡罗模拟。在我们的模拟中,进行了 700 次试验。如果我们再次运行它,我们会得到不同的结果——尽管差异很可能会缩小。...这意味着最差的7个结果(即最差的 1%)低于 -5%。因此,蒙特卡罗模拟得出以下 VaR 类型的结论:在 99% 的置信度下,我们预计在任何给定月份的损失不会超过 5%。...这可以通过将产生的每日收益值与各自股票的最终价格相乘来实现。点击文末 “阅读原文”获取全文完整资料。本文选自《Python蒙特卡罗(Monte Carlo)模拟计算投资组合的风险价值(VaR)》。...(MCMC)采样R语言使用蒙特卡洛模拟进行正态性检验及可视化R语言蒙特卡洛计算和快速傅立叶变换计算矩生成函数NBA体育决策中的数据挖掘分析:线性模型和蒙特卡罗模拟Python风险价值计算投资组合VaR(

    1.2K00

    策略梯度搜索:不使用搜索树的在线规划和专家迭代 | 技术头条

    蒙特卡罗树搜索(MCTS)在Go和Hex等游戏中实现最大测试时间性能的价值早已为人所知。...2)Hex:Hex 是一个基于双人的基于连接的游戏,在n×n六边形网格上进行。游戏双方分别用黑色和白色棋子表示,双方轮流在空的位置上放置自己的棋子。...3)Monte Carlo Tree Search(MCTS):蒙特卡罗树搜索是一种随时可用的最佳树搜索算法。它使用重复的游戏模拟来估计状态值,并使用更优的游戏策略进一步扩展搜索树。...当所有分支都模拟完成后,采取reward值最高的action。 4)Monte Carlo Search(MCS):蒙特卡罗搜索是一种比MCTS更简单的搜索算法。...由于评估模拟策略代价很大,所以该算法不会模拟到终止状态,而是使用截断的蒙特卡罗算法模拟。选择何时截断模拟并不简单,最佳选择策略可能取决于MDP本身。

    68230

    简单易学的机器学习算法——马尔可夫链蒙特卡罗方法MCMC

    对于一般的分布的采样,在很多的编程语言中都有实现,如最基本的满足均匀分布的随机数,但是对于复杂的分布,要想对其采样,却没有实现好的函数,在这里,可以使用马尔可夫链蒙特卡罗(Markov Chain Monte...MCMC的基础理论为马尔可夫过程,在MCMC算法中,为了在一个指定的分布上采样,根据马尔可夫过程,首先从任一状态出发,模拟马尔可夫过程,不断进行状态转移,最终收敛到平稳分布。...一、马尔可夫链 1、马尔可夫链 image.png 2、转移概率 image.png 3、马尔可夫链的平稳分布 image.png 二、马尔可夫链蒙特卡罗方法 1、基本思想 image.png 2、细致平稳条件...image.png 3、Metropolis采样算法 Metropolis采样算法是最基本的基于MCMC的采样算法。...参考文献 1、马尔可夫链蒙特卡罗算法 2、受限玻尔兹曼机(RBM)学习笔记(一)预备知识 3、LDA数学八卦

    1.8K50

    简单易学的机器学习算法——马尔可夫链蒙特卡罗方法MCMC

    对于一般的分布的采样,在很多的编程语言中都有实现,如最基本的满足均匀分布的随机数,但是对于复杂的分布,要想对其采样,却没有实现好的函数,在这里,可以使用马尔可夫链蒙特卡罗(Markov Chain...MCMC的基础理论为马尔可夫过程,在MCMC算法中,为了在一个指定的分布上采样,根据马尔可夫过程,首先从任一状态出发,模拟马尔可夫过程,不断进行状态转移,最终收敛到平稳分布。...二、马尔可夫链蒙特卡罗方法 1、基本思想 对于一个给定的概率分布P(X)P\left (X \right ),若是要得到其样本,通过上述的马尔可夫链的概念,我们可以构造一个转移矩阵为P\mathbf{P...3、Metropolis采样算法 Metropolis采样算法是最基本的基于MCMC的采样算法。...参考文献 1、马尔可夫链蒙特卡罗算法 2、受限玻尔兹曼机(RBM)学习笔记(一)预备知识 3、LDA数学八卦

    94830

    【视频】风险价值VaR原理与Python蒙特卡罗Monte Carlo模拟计算投资组合实例|附代码数据

    这种方法假设收益和损失是正态分布的。 最后一种方法是进行蒙特卡罗模拟。该技术使用计算模型来模拟数百或数千次可能迭代的期望收益。...蒙特卡洛模拟是指任何随机生成试验的方法,但它本身并没有告诉我们任何有关基础方法的信息 。 对于大多数用户来说,蒙特卡洛模拟相当于一个随机、概率结果的“黑匣子”生成器。...在不深入细节的情况下,我们根据其历史交易模式进行了蒙特卡罗模拟。在我们的模拟中,进行了 700 次试验。如果我们再次运行它,我们会得到不同的结果——尽管差异很可能会缩小。...这意味着最差的7个结果(即最差的 1%)低于 -5%。因此,蒙特卡罗模拟得出以下 VaR 类型的结论:在 99% 的置信度下,我们预计在任何给定月份的损失不会超过 5%。...如何使用Python通过蒙特卡洛模拟自动计算风险值(VaR)来管理投资组合或股票的金融风险?

    37000

    【视频】风险价值VaR原理与Python蒙特卡罗Monte Carlo模拟计算投资组合实例|附代码数据

    视频:风险价值VaR原理与Python蒙特卡罗Monte Carlo模拟计算投资组合实例 ** 拓端 ,赞15 风险管理人员使用 VaR 来衡量和控制风险暴露水平。...这种方法假设收益和损失是正态分布的。 最后一种方法是进行蒙特卡罗模拟。该技术使用计算模型来模拟数百或数千次可能迭代的期望收益。...蒙特卡洛模拟是指任何随机生成试验的方法,但它本身并没有告诉我们任何有关基础方法的信息 。 对于大多数用户来说,蒙特卡洛模拟相当于一个随机、概率结果的“黑匣子”生成器。...在不深入细节的情况下,我们根据其历史交易模式进行了蒙特卡罗模拟。在我们的模拟中,进行了 700 次试验。如果我们再次运行它,我们会得到不同的结果——尽管差异很可能会缩小。...这意味着最差的7个结果(即最差的 1%)低于 -5%。因此,蒙特卡罗模拟得出以下 VaR 类型的结论:在 99% 的置信度下,我们预计在任何给定月份的损失不会超过 5%。

    45000

    资源 | 跟着Sutton经典教材学强化学习中的蒙特卡罗方法(代码实例)

    你的MDP是有限的吗? 好消息是,蒙特卡罗方法能解决以上问题!蒙特卡罗是一种估计复杂的概率分布的经典方法。本文部分内容取自Sutton的经典教材《强化学习》,并提供了额外的解释和例子。...初探蒙特卡罗 蒙特卡罗模拟以摩纳哥的著名赌场命名,因为机会和随机结果是建模技术的核心,它们与轮盘赌,骰子和老虎机等游戏非常相似。...相比于动态规划,蒙特卡罗方法以一种全新的方式看待问题,它提出了这个问题:我需要从环境中拿走多少样本去鉴别好的策略和坏的策略?...解决值函数的一种经典方式是对第一次s的发生的回报进行采样,也叫首次访问蒙特卡罗预测。...在蒙特卡罗方法的背景下,策略迭代的核心问题是,正如我们之前说过的,如何确保探索和开采?

    75970

    随机采样方法——蒙特卡罗方法

    02 蒙特卡罗方法引入 蒙特卡罗原来是一个赌场的名称,用它作为名字大概是因为蒙特卡罗方法是一种随机模拟的方法,这很像赌博场里面的扔骰子的过程。...最早的蒙特卡罗方法都是为了求解一些不太好求解的求和或者积分问题。比如积分: ? 如果我们很难求解出f(x)的原函数,那么这个积分比较难求解。当然我们可以通过蒙特卡罗方法来模拟求解近似值。如何模拟呢?...03 条概率分布采样 上一节我们讲到蒙特卡罗方法的关键是得到x的概率分布。如果求出了x的概率分布,我们可以基于概率分布去采样基于这个概率分布的n个x的样本集,带入蒙特卡罗求和的式子即可求解。...但是还有一个关键的问题需要解决,即如何基于概率分布去采样基于这个概率分布的n个x的样本集。 ...从上面可以看出,要想将蒙特卡罗方法作为一个通用的采样模拟求和的方法,必须解决如何方便得到各种复杂概率分布的对应的采样样本集的问题。

    2.8K40

    Python + 蒙特卡洛 = 股市神器!

    最近股票、基金市场一片哀嚎,今天从技术的角度来聊聊如何基于编程+统计学来分析股票市场,仅供学习! 蒙特卡罗模拟是一种强大的统计技术,可以应用于金融领域,对金融资产(如股票)的行为进行模拟建模。...在本文中,我们将探讨如何在 Python 中实现蒙特卡罗模拟,以预测股票市场未来可能出现的情况。我们将使用从雅虎财经和库下载的历史数据。...蒙特卡罗模拟以摩纳哥的蒙特卡洛赌场命名,该赌场以其机会游戏而闻名。蒙特卡罗模拟基于生成多个随机场景来模拟系统的可变性。...考虑到回报的历史可变性,这种方法提供了股票市场潜在未来情景的概率视图。 蒙特卡罗模拟是投资者和金融分析师的宝贵工具,有助于更好地了解与股票市场投资相关的风险和不确定性。...尝试不同的参数和时间段,根据您的特定需求定制仿真。 蒙特卡洛方法是一种基于随机模拟的数学技术,它可以用于解决一些难以用解析方法或数值方法求解的问题。

    69111
    领券