首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用Tensorflow的Object Detection API修改训练中的冻结层?

TensorFlow的Object Detection API是一个用于目标检测任务的强大工具。在训练过程中,冻结层是指在训练过程中保持权重不变的层。修改冻结层可以用于微调预训练模型,以适应特定的目标检测任务。

要修改训练中的冻结层,可以按照以下步骤进行操作:

  1. 首先,确保已经安装了TensorFlow和Object Detection API,并且已经准备好了训练数据和预训练模型。
  2. 打开Object Detection API的训练配置文件,通常是一个.config文件。在该文件中,可以找到一个名为train_config的部分,其中包含了训练的相关配置。
  3. train_config部分中,可以找到一个名为fine_tune_checkpoint的字段,该字段指定了预训练模型的路径。将其设置为预训练模型的路径,例如:
  4. train_config部分中,可以找到一个名为fine_tune_checkpoint的字段,该字段指定了预训练模型的路径。将其设置为预训练模型的路径,例如:
  5. 接下来,找到一个名为trainable_variables的字段,该字段指定了哪些变量可以进行训练。默认情况下,所有的变量都是可训练的。如果想要冻结某些层,可以将这些层的变量从trainable_variables中移除。例如,如果想要冻结所有的卷积层,可以将以下代码添加到train_config部分中:
  6. 接下来,找到一个名为trainable_variables的字段,该字段指定了哪些变量可以进行训练。默认情况下,所有的变量都是可训练的。如果想要冻结某些层,可以将这些层的变量从trainable_variables中移除。例如,如果想要冻结所有的卷积层,可以将以下代码添加到train_config部分中:
  7. 这将冻结所有的卷积层,只训练最后的全连接层。
  8. 保存并关闭配置文件。
  9. 运行训练脚本,指定修改后的配置文件作为参数。例如:
  10. 运行训练脚本,指定修改后的配置文件作为参数。例如:

通过以上步骤,你可以使用TensorFlow的Object Detection API修改训练中的冻结层。这样可以根据具体的目标检测任务,微调预训练模型以提高检测性能。

关于TensorFlow的Object Detection API的更多信息和详细介绍,你可以参考腾讯云的相关产品文档:TensorFlow Object Detection API

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

tensorflow object detection API使用之GPU训练实现宠物识别

微信公众号:OpenCV学堂 猫狗识别概述 之前写过几篇关于tensorflow object detection API使用的相关文章分享,收到不少关注与鼓励,所以决定再写一篇感谢大家肯定与支持。...在具体介绍与解释之前,首先简单说一下本人测试与运行的系统与软件环境与版本 Windows 10 64位 Python3.6 Tensorflow 1.10 Object detection api CUDA9.0...第一步 下载与安装tensorflow与object detection API模块tensorflow安装与配置执行下面的命令即可 Python –m pip install –upgrade tensorflow-gpu...第三步: 使用预训练迁移学习进行训练,这里我使用的是SSD mobilenet的预训练模型,需要修改pipeline config文件与提供的分类描述文件分别为 - ssd_mobilenet_v1_pets.config...- pet_label_map.pbtxt 需要注意的是 ssd_mobilenet_v1_pets.config 文件中PATH_TO_BE_CONFIGURED修改为实际文件所在路径即可。

2.4K00

如何在Windows系统上使用Object Detection API训练自己的数据?

前言 之前写了一篇如何在windows系统上安装Tensorflow Object Detection API? 然后就想着把数据集换成自己的数据集进行训练得到自己的目标检测模型。...动手之前先学习了一波别人是如何实现的,看了大多数教程都有一个小问题:用VOC2012数据集进行训练当做用自己的数据集。 然而,初心想看的是自己的数据集啊!...下载预使用的目标检测模型 准备好训练数据后,选择模型进行训练,下载官方预训练模型【Github】 对于目标检测,可以考虑选择几种最常用的模型: ssd_mobilenet_v1_coco ssd_mobilenet_v2...: 'object' } 修改 进入tensorflow/models/research/object_detection/samples/config文件夹找到对应自己模型的config文件,针对自己的情况进行修改...训练模型只需要运行object_detection/legacy路径下的train.py程序即可。(当然object_detection API安装是大前提,具体看上一篇文章!)

1.5K40
  • tensorflow Object Detection API使用预训练模型mask r-cnn实现对象检测

    这里主要想介绍一下在tensorflow中如何使用预训练的Mask R-CNN模型实现对象检测与像素级别的分割。...tensorflow框架有个扩展模块叫做models里面包含了很多预训练的网络模型,提供给tensorflow开发者直接使用或者迁移学习使用,首先需要下载Mask R-CNN网络模型,这个在tensorflow...的models的github上面有详细的解释与model zoo的页面介绍, tensorflow models的github主页地址如下: https://github.com/tensorflow/...PATH_TO_LABELS = os.path.join('D:/tensorflow/models/research/object_detection/data', 'mscoco_label_map.pbtxt...,代码实现如下: image = cv2.imread("D:/apple.jpg"); # image = cv2.imread("D:/tensorflow/models/research/object_detection

    5.7K30

    谷歌开放的TensorFlow Object Detection API 效果如何?对业界有什么影响?

    这次公布的Object Detection API同样是放在了tensorflow/models里。 再来说下这次公布的代码的实现方式。...TensorFlow官方实现这些网络结构的项目是TensorFlow Slim,而这次公布的Object Detection API正是基于Slim的。...我们在TensorFlow Object Detection API的官方安装指南中,可以看到这样一句代码: ? 很显然,这就是钦点用Slim作特征抽取了。...使用其他模型做检测 一共公布了5个模型,上面我们只是用最简单的ssd + mobilenet模型做了检测,如何使用其他模型呢?...找到Tensorflow detection model zoo,根据里面模型的下载地址,我们只要分别把MODEL_NAME修改为以下的值,就可以下载并执行对应的模型了: ?

    1.2K80

    Tensorflow + OpenCV4 安全帽检测模型训练与推理

    开发环境 · 软件版本信息: Windows10 64位 Tensorflow1.15 Tensorflow object detection API 1.x Python3.6.5 VS2015...VC++ CUDA10.0 硬件: CPUi7 GPU 1050ti 如何安装tensorflow object detection API框架,看这里: Tensorflow Object Detection...object detection API框架中的脚本转换为tfrecord,主要是有几个XML跟JPEG图像格式错误,本人经过一番磨难之后把它们全部修正了。...\samples\configs 中发现,发现文件: faster_rcnn_inception_v2_coco.config 之后,修改配置文件的中相关部分,关于如何修改,修改什么,可以看这里: 修完完成之后...训练过程中可以通过tensorboard查看训练结果: 模型导出 完成了40000 step训练之后,就可以看到对应的检查点文件,借助tensorflow object detection API框架提供的模型导出脚本

    2.5K20

    系列 | OpenVINO视觉加速库使用二

    特别值得赞扬的是模型优化器在R4版本中开始支持原生的tensorflow与基于tensorflow对象检测框架预训练与迁移学习两种方式生成的tensorflow模型。...02 导出PB文件或者冻结预测图 如果不知道如何操作可以看我们公众号以前的文章即可,文章链接如下: Tensorflow如何导出与使用预测图 tensorflow模型导出与OpenCV DNN中使用...表示交换R与B通道顺序 上述的运行脚本与参数只能支持tensorflow本身的导出PB文件,对tensorflow对象检测框架中的预训练模型与自定义训练生成的模型无法正确生成IR。...Tensorflow object detection API训练出来的模型必须通过下面的命令行参数才可以正确生成IR --input_model 预训练的模型(二进制的bp文件路径) --tensorflow_use_custom_operations_config...,detection_scores,num_detections" / --tensorflow_object_detection_api_pipeline_config D:\tensorflow\ssd_mobilenet_v2

    3.5K51

    浣熊检测器实例, 如何用TensorFlow的Object Detector API来训练你的物体检测器

    这篇文章是“用Tensorflow和OpenCV构建实时对象识别应用”的后续文章。具体来说,我在自己收集和标记的数据集上训练了我的浣熊检测器。完整的数据集可以在我的Github repo上看到。...创建数据集 你需要做的第一件事是创建自己的数据集:Tensorflow的Object Detection API使用TFRecord文件格式,因此在最后我们需要将数据集转换为该文件格式。...在我的训练中,我使用ssd_mobilenet_v1_pets.config作为基础。...输出模型 在完成训练之后,我将训练过的模型导出到单个文件(Tensorflow graph proto)中,这样我就可以使用它进行推理。...q=cache:G8Pazlki568J:https://medium.com/towards-data-science/how-to-train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9

    1.7K70

    深度学习之迁移学习介绍与使用

    什么时候使用迁移 当我们有相似的任务需要完成的时候,我们可以使用预训练的相关模型,在此基础上进行迁移学习即可,这个方面caffe与tensorflow都提供大量的可以用于迁移学习的预训练模型库,在github.../models 在实际使用中我们把预训练的网络称为base-network,把要迁移的前n层复制到一个到目标网络(target network),然后随机初始化目标网络的余下各层、开始训练进行反向传播、...反向传播时候有两种方法可以使用: 把前面n层冻结forzen、只对后面的层进行训练,这种方法适合少的样本数据,而且随着层冻结n数值增大、网络性能会下降,这种是单纯的迁移学习。...不冻结前n层、全程参与训练不断调整它们的参数,实现更好的网络性能这种方法称为迁移学习+fine-tuning 迁移学习使用 在tensorflow中通过tensorflow object detection...API框架使用迁移学习是对象检测与识别,只需要几步即可:下面是我自己实现的基于tensorflow object detection API使用SSD模型迁移学习实现了简单的手势识别看视频即可:

    1.3K20

    TensorFlow:使用Cloud TPU在30分钟内训练出实时移动对象检测器

    ML Engine是Google Cloud的TensorFlow托管平台,它简化了训练和提供机器学习模型的过程。要使用它,请为刚刚创建的项目启用必要的API。...要查看Object Detection API支持的所有模型的列表,请查看下方链接(model zoo)。提取检查点后,将3个文件复制到GCS存储桶中。.../object_detection/g3doc/detection_model_zoo.md 当我们训练我们的模型时,它将使用这些检查点作为训练的起点。...要在手机上实时运行此模型需要一些额外的步骤。在本节中,我们将向你展示如何使用TensorFlow Lite获得更小的模型,并允许你利用针对移动设备优化的操作。...这两个脚本都输出了冻结图:export_tflite_ssd_graph输出我们可以直接输入到TensorFlow Lite的冻结图,并且这是我们要使用的图。

    4K50

    谷歌 TensorFlow 物理检测 API,目前最好的物体识别方案?

    目前有很多种图像识别的方案,而 Google 近日最近发布了其最新的 Tensorflow 物理检测接口(Object Detection API),使计算机视觉无处不在。...完整的代码可以在我的 Github 上找到:https://github.com/priya-dwivedi/Deep-Learning/blob/master/Object_Detection_Tensorflow_API.ipynb...所以,它的的体验到底如何?让我们先从理解 API 开始。 了解 API 此 API 经过 COCO 数据库训练。COCO 数据库拥有三十万张包括九十大类的图像集合,一部分类别如下: ?...下一步 关于此 API 以后的想法 使用更精确但抽象的模型来看看结果会如何; 优化识别速度,使其可以在移动设备上使用; Google 还提供使用这些模型进行转移学习的能力,即加载冻结模型,并添加具有不同图像类别的另一个输出图层...参考 Google Tensorflow Object Detection Github:https://github.com/tensorflow/models/tree/master/object_detection

    1.6K20

    教程 | 如何使用TensorFlow中的高级API:Estimator、Experiment和Dataset

    》的文章,通过实例详细介绍了如何使用 TensorFlow 中的高级 API(Estimator、Experiment 和 Dataset)训练模型。...值得一提的是 Experiment 和 Dataset 可以独立使用。这些高级 API 已被最新发布的 TensorFlow1.3 版收录。...目前,Keras API 正倾向于直接在 TensorFlow 中实现,TensorFlow 也在提供越来越多的高级构造,其中的一些已经被最新发布的 TensorFlow1.3 版收录。...在本文中,我们将通过一个例子来学习如何使用一些高级构造,其中包括 Estimator、Experiment 和 Dataset。阅读本文需要预先了解有关 TensorFlow 的基本知识。 ?...在本示例中,我们将使用 TensorFlow 中可用的 MNIST 数据,并在其周围构建一个 Dataset 包装器。

    3.4K70

    教程 | 如何使用TensorFlow API构建视频物体识别系统

    市面上已有很多种不同的方法来进行图像识别,谷歌最近开源的 TensorFlow Object Detection API 是其中非常引人注目的一个,任何来自谷歌的产品都是功能强大的。.../master/Object_Detection_Tensorflow_API.ipynb 训练的过程有多复杂?...TensorFlow Object Detection API 的代码库是一个建立在 TensorFlow 之上的开源框架,旨在为人们构建、训练和部署目标检测模型提供帮助。...在 TensorFlow API 的 GitHub 中,已经有经过 COCO 数据集训练过的可用模型了。COCO 数据集包含 30 万张图片,90 中常见事物类别。其中的类别包括: ?...object_detection/g3doc/detection_model_zoo.md 使用 API 首先,我尝试使用了其中最轻量级的模型(ssd_mobilenet)。

    1.5K50

    使用Tensorflow进行实时移动视频对象检测

    本文旨在展示如何通过以下步骤使用TensorFlow的对象检测API训练实时视频对象检测器并将其快速嵌入到自己的移动应用中: 搭建开发环境 准备图像和元数据 模型配置和训练 将训练后的模型转换为TensorFlow...,Tensorflow对象检测API现在应该位于中rf-models/research/object_detection,该代码库目前由社区维护,稍后将在此处调用该模块进行模型训练。...要安装Protobuf,Tensorflow Object Detection API使用Protobufs配置模型和训练参数。...模型训练 接下来,要初始化训练,现在可以直接使用来自TensorFlow Object Detection API的建模脚本: export PROJECT_DIR=TensorFlow Lite一起使用的兼容操作的TensorFlow冻结图。

    2.2K00

    如何使用TensorFlow中的Dataset API(使用内置输入管道,告别‘feed-dict’ )

    翻译 | AI科技大本营 参与 | zzq 审校 | reason_W 本文已更新至TensorFlow1.5版本 我们知道,在TensorFlow中可以使用feed-dict的方式输入数据信息,但是这种方法的速度是最慢的...幸运的是,TensorFlow提供了一种内置的API——Dataset,使得我们可以很容易地就利用输入管道的方式输入数据。在这篇教程中,我们将介绍如何创建和使用输入管道以及如何高效地向模型输入数据。...iter.get_next()的张量作为神经网络第一层的输入和损失函数的标签。.../api_docs/python/tf/data/Dataset ▌结论 Dataset API提供了一种快速而且鲁棒的方法来创建优化的输入管道来训练、评估和测试我们的模型。...在这篇文章中,我们了解了很多常见的利用Dataset API的操作。

    2.7K80

    训练Tensorflow的对象检测API能够告诉你答案

    背景:最近我们看到了一篇文章,关于如何用于你自己的数据集,训练Tensorflow的对象检测API。这篇文章让我们对对象检测产生了关注,正巧圣诞节来临,我们打算用这种方法试着找到圣诞老人。...创建Tensorflow记录文件 一旦边界框信息存储在一个csv文件中,下一步就是将csv文件和图像转换为一个TF记录文件,这是Tensorflow的对象检测API使用的文件格式。...https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md...为了导出模型,我们选择了从训练工作中获得的最新的检查点,并将其输出到一个冻结的推理图中。...将检查点转换为冻结推理图的脚本:https://github.com/turnerlabs/character-finder/blob/master/object_detection/export_inference_graph.py

    1.4K80

    玩转谷歌物体识别API,用TensorFlow和OpenCV打造实时识别应用

    【新智元导读】谷歌 TensorFlow 的 Object Detection API 刚刚开源, Pivotal Labs 的 Dat Tran 就做出了对象识别的应用。...TensorFlow’s (TF) 的 Object Detection API 刚刚开源,就有人利用它做出了对象识别的应用。评论的口径很一致:这么快就部署出来了,太牛了!让我们看看他是如何操作的。...有请 Pivotal Labs 的 Dat Tran: 本文将告诉大家如何使用 TensorFlow 新的 Object Detection API 和OpenCV(Python3.5)来开发你自己的实时对象识别的...我在使用这个 app 随机识别桌子上的东西:) 谷歌刚刚发布了新的 TensorFlow 对象识别(Object Detection)API。...在示例中,他们用了“ SSD with Mobilenet”模型,不过你也可以在他们称为“TensorFlow detection model zoo”的地方下载其他预训练模型。

    2.6K170

    使用Tensorflow对象检测在安卓手机上“寻找”皮卡丘

    在TensorFlow的许多功能和工具中,隐藏着一个名为TensorFlow对象探测API(TensorFlow Object Detection API)的组件。...TensorFlow对象检测API:https://github.com/tensorflow/models/tree/master/research/object_detection ?...首先,为了简单起见,两组XML(训练和测试)的数据都被转换为两个CSV文件(再一次,训练和测试),使用的是修改版本的xml_to_csv.py代码。...然而,这个notebook可以被修改为使用自定义训练模型的frozen版本(我们导出的版本),所以我就这样做了。...在这一节中,我谈到了训练管道,如何使用TensorBoard来评估模型。然后,一旦训练完成,我就完成了导出模型并导入Python notebook和安卓手机的过程。

    2.1K50

    用 TensorFlow 目标检测 API 发现皮卡丘!

    雷锋网按:本文为雷锋字幕组编译的技术博客,原文 Detecting Pikachu in videos using Tensorflow Object Detection ,作者 Juan De Dios...翻译 | 于志鹏 整理 | 吴璇 在 TensorFlow 众多功能和工具中,有一个名为 TensorFlow 目标检测 API 的组件。...数月之后,我开始着手优化我之前训练的检测皮卡丘的模型,目的是直接使用 Python、OpenCV、以及 TensorFlow 来检测视频中的目标。源代码可以从我的 GitHub 中获取。...现在,使用最新的和优化后的模型,在视频中检测皮卡丘。继续之前,我需要说明,我将忽略模型冻结和导入的整个过程,因为我之前的工作中已做了解答。...一个明显的例子是在 0:13 的时候,两个皮卡丘在互相拍打 (悲伤的场景 :(,我知道)。 总结与回顾 在这篇文章中,我介绍了如何使用 TensorFlow 目标检测库在视频中检测皮卡丘。

    81850
    领券