使用protobuf序列化tuple(std::string,torch::Tensor)的libtorch向量,可以按照以下步骤进行操作:
syntax = "proto3";
message Vector {
string str_data = 1;
bytes tensor_data = 2;
}
protoc vector.proto --cpp_out=.
这将生成vector.pb.h和vector.pb.cc两个文件。
#include "vector.pb.h"
#include <torch/torch.h>
// 创建tuple(std::string,torch::Tensor)的向量
std::vector<std::tuple<std::string, torch::Tensor>> createVector() {
std::vector<std::tuple<std::string, torch::Tensor>> vector;
// 添加数据
std::string str_data = "Hello, World!";
torch::Tensor tensor_data = torch::ones({2, 2});
vector.push_back(std::make_tuple(str_data, tensor_data));
return vector;
}
// 序列化向量为protobuf消息
Vector serializeVector(const std::vector<std::tuple<std::string, torch::Tensor>>& vector) {
Vector proto_vector;
for (const auto& item : vector) {
std::string str_data = std::get<0>(item);
torch::Tensor tensor_data = std::get<1>(item);
// 设置protobuf消息字段值
proto_vector.add_str_data(str_data);
proto_vector.add_tensor_data(tensor_data.data_ptr<uint8_t>(), tensor_data.numel() * sizeof(float));
}
return proto_vector;
}
// 反序列化protobuf消息为向量
std::vector<std::tuple<std::string, torch::Tensor>> deserializeVector(const Vector& proto_vector) {
std::vector<std::tuple<std::string, torch::Tensor>> vector;
for (int i = 0; i < proto_vector.str_data_size(); ++i) {
std::string str_data = proto_vector.str_data(i);
const std::string& tensor_data = proto_vector.tensor_data(i);
// 从字节数据中恢复torch::Tensor
torch::Tensor tensor = torch::from_blob(const_cast<char*>(tensor_data.data()), {2, 2}, torch::kFloat32);
vector.push_back(std::make_tuple(str_data, tensor));
}
return vector;
}
这样,你就可以使用protobuf序列化和反序列化tuple(std::string,torch::Tensor)的libtorch向量了。
注意:以上代码示例中使用了libtorch库和protobuf库,需要确保已正确安装和配置这些库,并在代码中包含相应的头文件。另外,还需要链接对应的库文件。
没有搜到相关的沙龙
领取专属 10元无门槛券
手把手带您无忧上云