上一节讲了当遇到偏斜类的时候,如何对算法效果进行评价,使用查准率和召回率。在很多实际应用中,我们还希望能在查准率和召回率间进行权衡,使得两个指标都取得不错的结果。...权衡查准率和召回率的例子 还是用逻辑回归来进行癌症分类的例子,如下图。图中右上角框起来的是上节讲的“查准率”和“召回率”的定义公式,忘了的可以翻翻上一节的内容。 ?...一种办法,算查准率P和召回率R的均值,如下图。...另外一个办法,就是使用F1值,它的公式和计算办法如下图。 ? F1值有时候也被称为F值,是一种在多个算法间进行取舍的衡量指标值。...因为式子的分母是查准率和召回率的乘积,所以只有两者差不多大的时候,乘积的结果才会取得较大的值。 小结 本节讲了逻辑回归中存在一个阈值,调整这个阈值控制输出结果,然后可以调整查准率和召回率的取值。
准确率和召回率的计算 准确率是预测正确数量 / 总数量 精确率(precision)是针对预测结果而言,它表示的是预测为正的样本中有多少是真正的正样本.预测为正有两种可能,一种就是把正类预测为正类(...R = TP / (TP + FN) 精确率 = 提取出的正确信息条数 / 提取出的信息条数 召回率 = 提取出的正确信息条数 / 样本中的信息条数 举这样一个例子:某池塘有1400条鲤鱼,300...50%) = 58.3% F值 = 精确率 * 召回率 * 2 / (精确率 + 召回率) 对于多分类或者n个二分类混淆矩阵上综合考察查准率(precision)和查全率(recall) 1.一种直接的做法是现在各混淆矩阵上分别计算出查准率和查全率...”微查准率(micro-P)”/“微查全率”(micro-R)和”微F1”(micro-F1): \(micro-P = \frac{ATP}{ATP + AFP}\) \(micro-R=\frac{...ATP}{ATP + AFN}\) \(micro-F1=\frac{2*micro-P*micro-R}{micro-P+micro-R}\) 如何提高准确率 提高准确率的手段可以分为三种:1)Bagging
理解精确率(precision)、准确率(accuracy)和召回率(recall) 正样本 负样本 预测正例 TP FP 预测反例 FN TN TN,预测是负样本,预测对了 FP,预测是正样本,预测错了...FN,预测是负样本,预测错了 TP,预测是正样本,预测对了 1、精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。...那么预测为正就有两种可能了,一种就是把正类预测为正类(TP),另一种就是把负类预测为正类(FP),也就是 大白话就是“ 你预测为正例的里面有多少是对的” 2、召回率是针对我们原来的正样本而言的,它表示的是正例样本中有多少被预测正确了...大白话就是“正例样本里你的预测正确了多少” 3、准确率是针对我们原来所有样本而言的,它表示的是所有样本有多少被准确预测了 R=(TP+TN)/(TP+TN+FP+FN) 在信息检索领域,精确率和召回率又被称为查准率和查全率..., 查准率=检索出的相关信息量 / 检索出的信息总量 查全率=检索出的相关信息量 / 系统中的相关信息总量
其中用到了评估度量值:查准率(precision)和召回率(recall)。如下图: ?...对于认为所有人都没有患癌症的算法,召回率为 0,那么这种算法就表现的很差,我们就不会被算法表面的结果所欺骗。 权衡查准率和召回率 回顾逻辑回归算法: ?...当我们把临界值 0.5 增大,查准率就会增大而召回率就会减小,当我们把临界值 0.5 减小,查准率就会减小而召回率就会增大。 ?...这时候首先想到用平均值,但是会发现,Algorithm 3 的平均值最大但是这个算法表现的是最差的,因此取查准率和召回率的平均值这种做法是不可取的。 我们需要要用到 F1 值去计算评估度量值。...根据 F1 值的定义,当查准率和召回率其中有一个为 0 时,F1 值就为 0,因此 F1 值可以作为评估度量值。
性能度量 ① 错误率与精度 错误率和精度是分类问题中常用的性能度量指标,既适用于二分类任务,也适用于多分类任务....类似的问题在很多分类场景下都会出现,“查准率”(precision)与“召回率”(recall)是更为适合的度量标准。...: TP / (TP + FP),表示分的准不准 召回率:TP / (TP + FN),表示分的全不全,又称为“查全率” F1得分: 查准率和召回率是一对矛盾的度量。...通常只有在一些简单任务中,才能同时获得较高查准率和召回率。 查准率和召回率在不同应用中重要性也不同。...根据混淆矩阵,查准率、召回率也可表示为: 查准率 = 主对角线上的值 / 该值所在列的和 召回率 = 主对角线上的值 / 该值所在行的和 ④ 实验 利用sklearn提供的朴素贝叶斯分类器分类,并打印查准率
从而得出如下概念 查准率:预测为正里多少实际为正,precision,也叫精度 ? 查全率:实际为正里多少预测为正,recall,也叫召回率 ? 查准率和查全率是一对矛盾的度量。...例如还是一车西瓜,我希望将所有好瓜尽可能选出来,如果我把所有瓜都选了,那自然所有好瓜都被选了,这就需要所有的瓜被识别为好瓜,此时查准率较低,而召回率是100%, 如果我希望选出的瓜都是好瓜,那就要慎重了...β>0,β度量了查全率对查准率的重要性,β=1时即为F1 β>1,查全率更重要,β查准率更重要 多分类的F1 多分类没有正例负例之说,那么可以转化为多个二分类,即多个混淆矩阵,在这多个混淆矩阵上综合考虑查准率和查全率...,即多分类的F1 方法1 直接在每个混淆矩阵上计算出查准率和查全率,再求平均,这样得到“宏查准率”,“宏查全率”和“宏F1” ?...横坐标为假正例率,纵坐标为真正例率,曲线下的面积叫 AUC 如何评价模型呢?
因此对于’偏斜类’,我们希望有一个不同的’误差度量值’或者不同的’评估度量值’,其中一种评估度量值叫做’查准率(准确率)’和’召回率’ ?...具体地说,如果一个分类模型拥有高的查准率和召回率,那么我们可以确信地说,这个算法表现很好,即便我们拥有很偏斜的类。 12.4 精确度和召回率的权衡 ?...或者更泛的说,如果我们有不同的算法,或者不同的想法,我们如何比较不同的’查准值’和’召回率’???...我们之前讲到,’评估度量值’的重要性,这个概念是,通过一个具体的数字来反映你的回归模型到底如何,但是查准值和召回率的问题,我们却不能这样做。...实现一个’评估度量值’的方法: 求’查准率’和’召回率’的平均值 (不推荐) ?
图中的曲线C就是一条P-R曲线,P表示纵轴的查准率precision,R表示横轴的召回率或称为查全率recall。...所以我们要先得到一组rhat和p,这需要我们先了解recall和precision是如何计算的。...这样,在置信度阈值为0.6的情况下,我们就得到了一对P(precision)和R(recall),接着我们取不同的置信度阈值,得到更多的P-R对,然后根据公式(2)找到所有大于指定召回率r的召回率rhat...所对应的的p的最大值(采用这种方法是为了保证P-R曲线是单调递减的,避免摇摆),作为当前指定召回率r条件下的最大查准率p,然后根据公式(1)计算出AP。...,所以要加入IoU的概念,并考虑多个类别,而mAP就是在考虑了IoU和多类别之后计算出的度量指标。
[i20190926091648.png] 图中的曲线C就是一条P-R曲线,P表示纵轴的查准率precision,R表示横轴的召回率或称为查全率recall。...所以我们要先得到一组rhat和p,这需要我们先了解recall和precision是如何计算的。...这样,在置信度阈值为0.6的情况下,我们就得到了一对P(precision)和R(recall),接着我们取不同的置信度阈值,得到更多的P-R对,然后根据公式(2)找到所有大于指定召回率r的召回率rhat...所对应的的p的最大值(采用这种方法是为了保证P-R曲线是单调递减的,避免摇摆),作为当前指定召回率r条件下的最大查准率p,然后根据公式(1)计算出AP。...,所以要加入IoU的概念,并考虑多个类别,而mAP就是在考虑了IoU和多类别之后计算出的度量指标。
今天给大家带来一篇如何评价模型的好坏以及模型的得分 最下面的代码最有用 一、错误率与精度(accuracy 准确) 错误率和精度是分类任务中最常用的两种性能度量,既适用于二分类任务,也适用于多分类任务... 查准率 P与查全率 R 分别定义为 ? ...查准率和查全率是一对矛盾的度量.一般来说,查准率高时,查全率往往偏低;而查全率高时,查准率往往偏低。 F1-score,是统计学中用来衡量二分类模型精确度的一种指标。...它同时兼顾了分类模型的准确率和召回率。F1分数可以看作是模型准确率和召回率的一种加权平均,它的最大值是1,最小值是0。 ...随着阈值的变化,就像假设检验的两类错误一样,如下图所示召回率和精确率不能同时提高,因此我们就需要一个指标来调和这两个指标,于是人们就常用F1-score来进行表示: ?
1、准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。...其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率;召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率。...召回率 = 提取出的正确信息条数 / 样本中的信息条数 两者取值在0和1之间,数值越接近1,查准率或查全率就越高。 3....F值 = 正确率 * 召回率 * 2 / (正确率 + 召回率) (F 值即为正确率和召回率的调和平均值) 不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。...3、E值 E值表示查准率P和查全率R的加权平均值,当其中一个为0时,E值为1,其计算公式: b越大,表示查准率的权重越大。
1、准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。...其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率;召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率。...召回率 = 提取出的正确信息条数 / 样本中的信息条数 两者取值在0和1之间,数值越接近1,查准率或查全率就越高。 3....F值 = 正确率 * 召回率 * 2 / (正确率 + 召回率) (F 值即为正确率和召回率的调和平均值) 不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。...3、E值 E值表示查准率P和查全率R的加权平均值,当其中一个为0时,E值为1,其计算公式: ? b越大,表示查准率的权重越大。
那么如何知道这个模型是好是坏呢?我们必须有个评判的标准。为了了解模型的泛化能力,我们需要用某个指标来衡量,这就是性能度量的意义。...当然,对于分类和回归两类监督学习,分别有各自的评判标准。本篇我们主要讨论与分类相关的一些指标,因为AUC/ROC就是用于分类的性能度量标准。 ▌混淆矩阵,准确率,精准率,召回率 1....即如果样本不平衡,准确率就会失效。 正因为如此,也就衍生出了其它两种指标:精准率和召回率。 3....精准率和召回率的关系,F1分数 通过上面的公式,我们发现:精准率和召回率的分子是相同,都是TP,但分母是不同的,一个是(TP+FP),一个是(TP+FN)。两者的关系可以用一个P-R图来展示: ?...因此,为了找到一个最合适的阈值满足我们的要求,我们就必须遍历0到1之间所有的阈值,而每个阈值下都对应着一对查准率和查全率,从而我们就得到了这条曲线。 有的朋友又问了:如何找到最好的阈值点呢?
准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。...不妨看看这些指标的定义先: 正确率 = 提取出的正确信息条数 / 提取出的信息条数 召回率 = 提取出的正确信息条数 / 样本中的信息条数 两者取值在0和1之间,数值越接近1,查准率或查全率就越高...注意:准确率和召回率是互相影响的,理想情况下肯定是做到两者都高,但是一般情况下准确率高、召回率就低,召回率低、准确率高,当然如果两者都低,那是什么地方出问题了。...image 可知F1综合了P和R的结果,当F1较高时则能说明试验方法比较有效。 E值 E值表示查准率P和查全率R的加权平均值,当其中一个为0时,E值为1,其计算公式: ?...AUC计算工具:http://mark.goadrich.com/programs/AUC/ P/R和ROC是两个不同的评价指标和计算方式,一般情况下,检索用前者,分类、识别等用后者。
很明显,对于偏斜类的误差度量需要优化。 偏斜类的误差度量 前面癌症判断那个例子中,假如我们采用了一些办法将算法从99.2%的准确率提升到99.5%的准确率,那我们对算法的这些改进是否有效呢?...当我们遇到偏斜类时,经常使用查准率(Precision)和召回率(recall)的概念。这两个概念适用于二分类问题。 对于一个二分类问题,预测结果和实际结果有四种组合。...召回率Recall的意思是,TP/(TP+FN)。这个意思是,你预测为真并且正确的数量在实际为真的数量中的占比。癌症的那个例子就是,实际患有癌症的患者被算法成功筛查出来的比例。...召回率当然是越高越好。 回到前面的例子再来看看,如果我们不管三七二十一,都认为患者没有癌症,准确率99.5%。那这样做的召回率就是0,当然这个算法就毫无意义了。...这样,如果一个算法同时有较好的查准率和召回率,那这个算法就还是不错的。注意:使用查准率和召回率的时候,我们让那个出现比较少的情况为1(y=1出现较少)。
一,精确率、召回率与F1 1.1,准确率 准确率(精度) – Accuracy,预测正确的结果占总样本的百分比,定义如下: 准确率 = (TP+TN)/(TP+TN+FP+FN) 错误率和精度虽然常用...1.2,精确率、召回率 精确率(查准率)P、召回率(查全率)R 的计算涉及到混淆矩阵的定义,混淆矩阵表格如下: |名称|定义| |—|—| |True Positive(真正例, TP)|将正类预测为正类数...: 查准率(精确率)P = TP/(TP+FP) 查全率(召回率)R = TP/(TP+FN) 精准率和准确率看上去有些类似,但是完全不同的两个概念。...精确率和召回率的区别在于分母不同,一个分母是预测为正的样本数,另一个是原来样本中所有的正样本数。...因此,为了找到一个最合适的阈值满足我们的要求,我们就必须遍历 0 到 1 之间所有的阈值,而每个阈值下都对应着一对查准率和查全率,从而我们就得到了 PR 曲线。 最后如何找到最好的阈值点呢?
但是同样的样本集,同样的方法运用到查准率公式上,就不可能得到一个很高的值了。 查全率/召回率 recall 所有真的是正样本的图片中,被成功预测出来的图片所占的比例。 ?...查准率和查全率的关系 一般来说,想查的准,那么往往查不全(想想宁缺毋滥);想查的全,又往往会不准(想想宁抓错不放过)。所以P和R是两个矛盾的量。...F1分数和Fβ分数 然而,上面的度量方法只能通过看图来理解,但是我们希望能更直接的通过一个分数来判定模型的好坏。...纵坐标是真正率(其实就是召回率/查全率)=TP/(TP+FN),横坐标是假正率(误检率FPR)=FP/(FP+TN)。...因为我们希望召回率高,误检率低,所以曲线上越接近左上角(0,1)的点表现越好。所以ROC曲线是干嘛的?就是通过查全率和误检率的综合表现来评价模型的好坏用的。
(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。...其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率;召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率。...正确率、召回率和 F 值是在鱼龙混杂的环境中,选出目标的重要评价指标。不妨看看这些指标的定义先: 1. 正确率 = 提取出的正确信息条数 / 提取出的信息条数 2....召回率 = 提取出的正确信息条数 / 样本中的信息条数 两者取值在0和1之间,数值越接近1,查准率或查全率就越高。 3....F值 = 正确率 * 召回率 * 2 / (正确率 + 召回率) (F 值即为正确率和召回率的调和平均值) 不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。
在这篇文章中,我会做详细的介绍,说明如何评估一个分类器,包括用于评估模型的一系列不同指标及其优缺点。...混淆矩阵的用途是计算查准率和查全率。 查准率与查全率(Precision & Recall) 查准率(又称准确率)和查全率(又称召回率)相比分类精度来说更进一步,使我们对模型评估有了更加具体的了解。...还有一种指标把查准率与查全率结合了起来,这就是F1度量。 F1度量(F1 Score) F1度量是查准率与查全率的调和平均的倒数。 ?...对于类别不平衡的分类问题,F1度量比分类精度更有用,因为它同时考虑了假阳性和假阴性。最佳的F1度量值是1,最差则是0。...如果阈值设置为1,则TPR和FPR都将变为0。因此,将阈值设置为0或1并不是一个好的选择。 我们的目标是提高真阳性率(TPR),同时保持较低的假阳性率(FPR)。
领取专属 10元无门槛券
手把手带您无忧上云