可以正常返回我们预期的结果。 我们在代码中创建数据模型,然后数据模型声明为继承自 BaseModel 的类。 使用标准的 Python 类型来声明所有属性。...从结果中,我们可以看出,当我们没有传递参数的时候,默认是null,那么我看下如果我们没有定义可选属性的不传递,接口会怎么返回给我们呢。 ? 我们可以看到,接口已经返回了对应的错误。...所以当我们在定义的时候就可以对对应的参数进行是否是可选择的参数。其实我们在定义的时候,也定义了类型,比如我们对应price定义是一个float,但是呢,我们现在给它传递一个str类型,比如五角。...接口文档默认定义模型将成为生成的 OpenAPI 模式的一部分,并且在交互式 API 文档中展示。...后续我们会分享不适用 Pydantic模型也可以。 ---- 后记 发现问题,解决问题。遇到问题,慢慢解决问题即可。 欢迎关注雷子说测试开发,后续将会持续为大家分享更多的技术知识
前言 post请求接收json格式请求body 创建数据模型 从 pydantic 中导入 BaseModel, 将你的数据模型声明为继承自 BaseModel 的类。...由于你已经在函数中将它声明为 Item 类型,你还将获得对于所有属性及其类型的一切编辑器支持(代码补全等)。 为你的模型生成 JSON 模式 定义,你还可以在其他任何对你的项目有意义的地方使用它们。...这些模式将成为生成的 OpenAPI 模式的一部分,并且被自动化文档 UI 所使用。...启动服务后,使用 postman 测试接口 docs 文档 你所定义模型的 JSON 模式将成为生成的 OpenAPI 模式的一部分,并且在交互式 API 文档中展示: body + path路径参数...FastAPI 将识别出与路径参数匹配的函数参数应从路径中获取,而声明为 Pydantic 模型的函数参数应从请求体中获取。
Pydantic Model FastAPI 通过 response_model 会做 将输出数据转换为 Model 中声明的类型 验证数据 在 OpenAPI 给 Response 添加 JSON...因为路径函数的返回值并不是固定的,可能是 dict、数据库对象,或其他模型 但是使用响应模型可以对响应数据进行字段限制和序列化 区分请求模型和响应模型的栗子 需求 假设一个注册功能 输入账号、密码、昵称...、邮箱,注册成功后返回个人信息 正常情况下不应该返回密码,所以请求体和响应体肯定是不一样的 实际代码 from typing import Optional from fastapi import FastAPI...参数数据类型 从上面可以看到,这两个参数的类型都是 Optional[Union[SetIntStr, DictIntStrAny]] Optional:可选 Union:联合类型 既可以是 SetIntStr...不推荐使用这两个参数,而推荐使用上面讲到的思想,通过多个类来满足请求模型、响应模型 因为在 OpenAPI 文档中可以看到 Model 完整的 JSON Schema response_model_include
Python第三流行的Web框架 在2020年的Python开发者调查结果中,有这样一段话:“FastAPI在此次调查迭代中首次被引为选项,表现为Python第三流行的Web框架。”...pydantic是一个数据验证的库,FastAPI使用它来做模型校验。...,它的name必须str类型,price必须float类型,is_offer是可选的,可以为bool类型或不传。...+查询参数+请求体 总结一下,在函数参数中,url path中定义的叫做路径参数,没有定义的叫做查询参数,类型是pydantic model的叫做请求体,FastAPI会根据这套规则来自动识别: from...附加模型 在上面的示例中,UserIn是入参,UserOut是出参,不包含password,但是在实际情况中,还需要第三个模型UserInDB,在存入数据库时,把password进行加密。
它接收的类型与你将为 Pydantic 模型属性所声明的类型相同,因此它可以是一个 Pydantic 模型,但也可以是一个由 Pydantic 模型组成的 list,例如 List[Item]。...FastAPI 将使用此 response_model 来: 将输出数据转换为其声明的类型。 校验数据。 在 OpenAPI 的路径操作中为响应添加一个 JSON Schema。...并在自动生成文档系统中使用。 但最重要的是: 会将输出数据限制在该模型定义内。...我们下面做一个演示,我们正常的都应该知道,我们去创建用户的时候呢,我们的密码是明文的,我们要返回的用户信息中,不能携带我们的密码,我们应该如何处理呢,其实很简单 from typing import...我们看下接口的文档的展示 我们在接口的请求中,如果不传递,我不想要返回带默认值的, 我们看下代码如何实现的 from typing import Optional
在Python面试中,对FastAPI的理解与实践能力已成为评估候选人技能的重要组成部分。本篇博客将深入浅出地探讨FastAPI面试中常见的问题、易错点以及应对策略,并结合实例代码进行讲解。...类型提示与验证Pydantic模型:介绍Pydantic库在FastAPI中的应用,如何定义模型(BaseModel)进行数据验证与序列化。...数据库操作ORM与SQLAlchemy:解释如何集成SQLAlchemy实现对象关系映射(ORM),创建模型、执行CRUD操作。...二、易错点与避免策略类型提示不准确:确保类型提示与实际请求数据结构完全匹配,避免因类型不一致导致的请求验证失败。合理使用Optional、List、Dict等类型。...的核心特性和最佳实践,规避常见错误,并通过实战项目积累经验,将使你在Python面试中展现出扎实的Web服务开发技能,从容应对FastAPI相关的问题挑战。
另外的 API 文档:ReDoc 简洁 任何类型都有合理的默认值,任何和地方都有可选配置。所有的参数被微调,来满足你的需求,定义成你需要的 API。 但是默认情况下,一切都能“顺利工作”。...安全性及身份验证 集成了安全性和身份认证。杜绝数据库或者数据模型的渗透风险。 OpenAPI 中定义的安全模式,包括: HTTP 基本认证。 OAuth2 (也使用 JWT tokens)。...无限制"插件" 或者说,导入并使用你需要的代码,而不需要它们。 任何集成都被设计得被易于使用(用依赖关系),你可以用和路径操作相同的结构和语法,在两行代码中为你的应用创建一个“插件”。...更快: 在 基准测试 中,Pydantic 比其他被测试的库都要快。 验证复杂结构: 使用分层的 Pydantic 模型, Python typing的 List 和 Dict 等等。...可扩展: Pydantic 允许定义自定义数据类型或者你可以用验证器装饰器对被装饰的模型上的方法扩展验证。 100% 测试覆盖率。
jsonable_encoder 在实际应用场景中,可能需要将数据类型(如:Pydantic 模型)转换为与 JSON 兼容的类型(如:字典、列表) 比如:需要将数据存储在数据库中 为此,FastAPI...提供了一个 jsonable_encoder() 函数 jsonable_encoder 实际上是 FastAPI 内部用来转换数据的,但它在许多其他场景中很有用 实际栗子 需求 假设有一个仅接收兼容...JSON 数据的数据库 fake_db 例如,它不接收日期时间对象,因为这些对象与 JSON 不兼容 因此,必须将日期时间对象转换为包含 ISO 格式数据的 str 同样,这个数据库不会接收 Pydantic...模型(具有属性的对象),只会接收 dict 使用 jsonable_encoder 将数据转换成 dict 实际代码 #!...模型转换为 dict,并将日期时间转换为 str 它将返回一个 Python 标准数据结构(比如:dict),其中的值和子值都可以和 JSON 兼容 访问 /items/123 接口,查看控制台输出
它没有使用像第三方库(如Pydantic)提供数据验证,序列化和文档,它有自己的库。因此,这些数据类型定义将不太容易重用。 它需要更多详细的配置。...启发 FastAPI 地方 使用模型字段的默认值为数据类型定义额外的验证,对编辑器支持更加友好,在 Pydantic 之前,这是不可行的。...使用) 启发 FastAPI 地方 我认为用相同的 Python 类型声明多个内容(数据验证,序列化和文档),同时又提供了强大的编辑器支持,这是非常绝妙的主意。...FastAPI 使用的框架 Pydantic Pydantic 是一个库,基于Python类型提示来定义数据验证,序列化和文档(使用JSON模式)。这使其非常直观。...FastAPI使用它来处理所有数据验证,数据序列化和自动模型文档(基于JSON Schema)。
读完需要 9 分钟 速读仅需 3 分钟 / python 编程 30 秒高级私人定制 Response 对象,十倍扩展效率 / 建议大家可以使用 腾讯云服务器 进行云上测试和验证自己的代码(CDN...在 fastapi 路径操作中,通常直接返回以下数据类型:dict,list,Pydantic 模型,数据库模型以及其他数据类型。...2.3 预定义 responses 与自定义 responses 并行 本小节我们是我们自定义的加强版本,可进行任意的扩展 from typing import Optional from fastapi...中 Response 模型 2.讲解了如何去自定义 Response,读者可根据自己的业务场景进行实践 3.简单介绍了 status_code ,下节在分享 fastapi 异常处理的时候还会再讲解...原创不易,只愿能帮助那些需要这些内容的同行或刚入行的小伙伴,你的每次 点赞、分享 都是我继续创作下去的动力,我希望能在推广 python 技术的道路上尽我一份力量,欢迎在评论区向我提问,我都会一一解答,
typing是Python标准库,用来做类型提示。...FastAPI使用typing做了: 编辑器支持; 类型检查; 定义类型,request path parameters, query parameters, headers, bodies...模型 Pydantic模型有点类似于Java的POJO,就是定义一个类,里面有一堆属性,这些属性都有类型。...:,初始化赋值使用的是=。...Pydantic对于可选类型有个特殊语法...
前言 在一个完整的应用程序中,通常会有很多个相关模型,比如 请求模型需要有 password 响应模型不应该有 password 数据库模型可能需要一个 hash 加密过的 password 多个模型的栗子...from typing import Optional from pydantic import BaseModel, EmailStr app = FastAPI() # 请求模型 class...提供的方法,将模型的实例对象转换为 dict Pydantic 入门篇 **user.dict() 先将 user 转成 dict,然后解包 Python 解包教程 减少代码重复 核心思想 减少代码重复是...模型,作为其他模型的基础 然后创建该模型的子类来继承其属性(类型声明、验证等),所有数据转换、验证、文档等仍然能正常使用 这样,不同模型之间的差异(使用明文密码、使用哈希密码、不使用密码)也很容易识别出来...from typing import Optional from pydantic import BaseModel, EmailStr app = FastAPI() # 基类模型 class
混合使用 Path、Query 和请求体参数 你可以随意地混合使用 Path、Query 和请求体参数声明,FastAPI 会知道该如何处理。...它将执行对复合数据的校验,并且像现在这样为 OpenAPI 模式和自动化文档对其进行记录。...请求体中的单一值 与使用 Query 和 Path 为查询参数和路径参数定义额外数据的方式相同,FastAPI 提供了一个同等的 Body。...例如,为了扩展先前的模型,你可能决定除了 item 和 user 之外,还想在同一请求体中具有另一个键 importance。...但是,如果你希望它期望一个拥有 item 键并在值中包含模型内容的 JSON,就像在声明额外的请求体参数时所做的那样,则可以使用一个特殊的 Body 参数 embed: item: Item = Body
更新部分数据时,可以在 Pydantic 模型的 .dict() 中使用 exclude_unset 参数。...更新部分数据小结 简而言之,更新部分数据做法: 使用 PUT 也可以使用PATCH; 提取存储的数据; 把数据放入 Pydantic 模型; 生成不含输入模型默认值的 dict (使用 exclude_unset...参数); 只更新用户设置过的值,不用模型中的默认值覆盖已存储过的值。...为已存储的模型创建副本,用接收的数据更新其属性 (使用 update 参数)。 把模型副本转换为可存入数据库的形式(比如,使用 jsonable_encoder)。...这种方式与 Pydantic 模型的 .dict() 方法类似,但能确保把值转换为适配 JSON 的数据类型,例如, 把 datetime 转换为 str 。
背景 创建 FastAPI 路径操作函数时,通常可以从中返回任何数据:字典、列表、Pydantic 模型、数据库模型等 默认情况下,FastAPI 会使用 jsonable_encoder 自动将该返回值转换为...JSON 字符串 然后,FastAPI 会将与 JSON 兼容的数据(例如 dict)放在 JSONResponse 中,然后将 JSONResponse 返回给客户端 总结:默认情况下,FastAPI...将使用 JSONResponse 返回响应 但是可以直接从路径操作函数中返回自定义的 JSONResponse 返回响应数据的常见方式(基础版) https://www.cnblogs.com/poloyy...__name__} ' TypeError: Object of type Item is not JSON serializable 类型错误:项目类型的对象不是 JSON 可序列化的 因为它无法转换为...更多自定义响应类型 JSONResponse HTMLResponse、PlainTextResponse ORJSONResponse、UJSONResponse RedirectResponse
混合使用 Path、Query 和请求体参数 2. 多个请求体参数 3. 请求体中的单一值 4. 多个请求体参数和查询参数 5. 嵌入单个请求体参数 6. 字段 7....嵌套模型 7.1 List 字段 7.2 子模型作为类型 8. 特殊类型校验 9. 带有一组子模型的属性 10....混合使用 Path、Query 和请求体参数 from fastapi import FastAPI, Path from typing import Optional from pydantic import...字段 可以使用 Pydantic 的 Field 在 Pydantic 模型内部声明校验和元数据 from fastapi import FastAPI, Path, Body from typing...嵌套模型 7.1 List 字段 将一个属性定义为拥有子元素的类型,如 list class Item(BaseModel): name: str price: float = Field
前面了解了一下python的类型提示,这里就接着记录一下Pydantic这个用来执行数据校验的库。而且FastAPI就是基于python的类型提示和Padantic实现的数据验证。...简介 官网:https://pydantic-docs.helpmanual.io/ Pydantic就是一个基于Python类型提示来定义数据验证、序列化和文档(使用JSON模式)的库;...使用Python的类型提示来进行数据校验和settings管理; 可以在代码运行的时候提供类型提示,数据校验失败的时候提供友好的错误提示; 定义数据应该如何在纯规范的Python代码中保存...简单的说,ORM 将数据库中的表与面向对象语言中的类建立了一种对应关系。...__fields__.keys()) # (这里查看所有字段)定义模型类的时候,所有字段都注明类型,字段顺序就不会乱 print("====="*6,'递归模型','====='*6) class
FastAPI 系列文章: FastAPI 学习之路(一) FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四)使用pydantic模型做请求体...我们需要增加这样的一个字段,而且书的可以销售的地方是多个的,那么我们应该如何实现呢。...就是之前的list使用typing 模块中导入 List,这样我们再去定义类型就可以,我们可以看下,加入我们在传递的list中的每一项都是str类型。...我们可以点进去看typing的源码。 假如我们现在有一个字段,但是它还是需要一个模型,比如我们有一个图片的。它里面需要有url和name。...那么我们应该怎么实现呢 from typing import Optional,List,Dict,Set,Tuple from fastapi import Body, FastAPI from pydantic
FastAPI 系列文章: FastAPI 学习之路(一) FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四)使用pydantic模型做请求体...这次我们分享一些数据类型。 正文 到目前为止,您一直在使用常见的数据类型,如: int float str bool 但是您也可以使用更复杂的数据类型。...其他数据类型 下面是一些你可以使用的其他数据类型: UUID: 一种标准的 "通用唯一标识符" ,在许多数据库和系统中用作ID。 在请求和响应中将以 str 表示。...在响应中 set 将被转换为 list 。 产生的模式将指定那些 set 的值是唯一的 (使用 JSON 模式的 uniqueItems)。...Decimal: 标准的 Python Decimal。 在请求和相应中被当做 float 一样处理。 下面是一个接口操作的示例,其中的参数使用了上面的一些类型。
FastAPI 是一个用于构建 API 的现代、快速(高性能)的 web 框架,使用 Python 3.6+ 并基于标准的 Python 类型提示。其性能可以与NodeJS和GO比肩。...我们上面创建的端点是静态的,它们不与数据库交互。在下一节中,您将了解如何使用SQLAlchemy进行 ORM 和Pydantic创建模型/计划,使我们的 API 充满活力。...好的,到目前为止还不错,我们现在将使用pydantic库来创建数据接口schema,它的主要作用是做类型强制检查,有点类似DRF的序列化器。...继续将以下代码添加到pollsapi/schemas.py class Config: SQLAlchemy 中的定义参数类型与 Pydantic 不同,在 SQLAlchemy 使用的是大写String...,并且将类型作为参数传递为此类=Column question_text = Column(String) 而Pydantic风格声明使用: 和小写的str。
领取专属 10元无门槛券
手把手带您无忧上云