首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    8 个 Python 高效数据分析的技巧

    一行代码定义List 定义某种列表时,写For 循环过于麻烦,幸运的是,Python有一种内置的方法可以在一行代码中解决这个问题。 ? 下面是使用For循环创建列表和用一行代码创建列表的对比。...Lambda表达式是你的救星!Lambda表达式用于在Python中创建小型,一次性和匿名函数对象。它能替你创建一个函数。...具体来说,map通过对列表中每个元素执行某种操作并将其转换为新列表。在本例中,它遍历每个元素并乘以2,构成新列表。请注意,list()函数只是将输出转换为列表类型。...回想一下Pandas中的shape df.shape (# of Rows, # of Columns) 从Pandas DataFrame中调用shape属性返回一个元组,第一个值代表行数,第二个值代表列数...使用Apply,可以将DataFrame列(是一个Series)的值进行格式设置和操作,不用循环,非常有用!

    2.7K20

    8个Python高效数据分析的技巧

    Lambda表达式是你的救星! Lambda表达式用于在Python中创建小型,一次性和匿名函数对象。 它能替你创建一个函数。...具体来说,map通过对列表中每个元素执行某种操作并将其转换为新列表。 在本例中,它遍历每个元素并乘以2,构成新列表。 请注意,list()函数只是将输出转换为列表类型。...回想一下Pandas中的shape 1df.shape 2(# of Rows, # of Columns) 从Pandas DataFrame中调用shape属性返回一个元组,第一个值代表行数,第二个值代表列数...Join,和Merge一样,合并了两个DataFrame。 但它不按某个指定的主键合并,而是根据相同的列名或行名合并。 ?...Apply将一个函数应用于指定轴上的每一个元素。 使用Apply,可以将DataFrame列(是一个Series)的值进行格式设置和操作,不用循环,非常有用!

    2.1K20

    这 8 个 Python 技巧让你的数据分析提升数倍!

    ,幸运的是,Python有一种内置的方法可以在一行代码中解决这个问题。...Lambda表达式是你的救星!Lambda表达式用于在Python中创建小型,一次性和匿名函数对象。它能替你创建一个函数。...具体来说,map通过对列表中每个元素执行某种操作并将其转换为新列表。在本例中,它遍历每个元素并乘以2,构成新列表。请注意,list()函数只是将输出转换为列表类型。...Join,和Merge一样,合并了两个DataFrame。但它不按某个指定的主键合并,而是根据相同的列名或行名合并。 ?...Apply将一个函数应用于指定轴上的每一个元素。使用Apply,可以将DataFrame列(是一个Series)的值进行格式设置和操作,不用循环,非常有用!

    2K10

    8个Python高效数据分析的技巧。

    1 一行代码定义List 定义某种列表时,写For 循环过于麻烦,幸运的是,Python有一种内置的方法可以在一行代码中解决这个问题。下面是使用For循环创建列表和用一行代码创建列表的对比。...Lambda表达式是你的救星!Lambda表达式用于在Python中创建小型,一次性和匿名函数对象, 它能替你创建一个函数。...,学习将它们与Map和Filter函数配合使用,可以实现更为强大的功能。...Join,和Merge一样,合并了两个DataFrame。但它不按某个指定的主键合并,而是根据相同的列名或行名合并。 ?...使用Apply,可以将DataFrame列(是一个Series)的值进行格式设置和操作,不用循环,非常有用!

    2.3K10

    Pandas三百题

    df.dropna(how='any') 13-缺失值补全|整体填充 将全部缺失值替换为* df.fillna('*') 14-缺失值补全|向上填充 将评分列的缺失值,替换为上一个电影的评分 df['评分...[5,['国家奥委会']] = '俄奥委会' 5-数据修改|替换值(单值) 将金牌数字的数字0替换为无 df['金牌数'].replace(0,'无') 6-数据修改|替换值(多值) 将无替换为缺失值...'].isin(['中国','美国','英国','日本','巴西']))&(df['金牌数']<30) 36 -筛选行|条件(包含指定值) 提取 国家奥委会 列中,所有包含国的行 df[df['国家奥委会...=['省/自治区'],columns='类别',aggfunc='sum') 8 - 数据透视|综合 制作「各省市」、「不同类别」产品「销售量与销售额」的「均值与总和」的数据透视表,并在最后追加一行『合计...将 df1 的索引设置为日期,将 df1 数据向后移动一天 df1.set_index(['日期']).shift(1) 25 - 日期重采样|日 -> 周 按周对 df1 进行重采样,保留每周最后一个数据

    4.9K22

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...索引值也是持久的,所以如果你对 DataFrame 中的行重新排序,特定行的标签不会改变。 5. 副本与就地操作 大多数 Pandas 操作返回 Series/DataFrame 的副本。...我们可以用多种不同的方式构建一个DataFrame,但对于少量的值,通常将其指定为 Python 字典会很方便,其中键是列名,值是数据。...在 Pandas 中,您需要更多地考虑控制 DataFrame 的显示方式。 默认情况下,pandas 会截断大型 DataFrame 的输出以显示第一行和最后一行。...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20

    Pandas 25 式

    操控缺失值 把字符串分割为多列 把 Series 里的列表转换为 DataFrame 用多个函数聚合 用一个 DataFrame 合并聚合的输出结果 选择行与列 重塑多重索引 Series 创建透视表...用多个文件建立 DataFrame ~ 按列 上个技巧按行合并数据集,但是如果多个文件包含不同的列,该怎么办? 本例将 drinks 数据集分为了两个 CSV 文件,每个文件都包含 3 列。 ?...isna() 生成一个由 True 与 False 构成的 DataFrame,sum() 把 True 转换为 1, 把 False 转换为 0。 还可以用 mean() 函数,计算缺失值占比。...用 dropna() 删除列里的所有缺失值。 ? 只想删除列中缺失值高于 10% 的缺失值,可以设置 dropna() 里的阈值,即 threshold. ? 16....上面显示了不同性别,不同舱型的幸存率,输出结果是一个多重索引的序列(Series),这种形式与实际数据相比多了多重索引。

    8.4K00

    数据分析篇 | PyCon 大咖亲传 pandas 25 式,长文建议收藏

    操控缺失值 把字符串分割为多列 把 Series 里的列表转换为 DataFrame 用多个函数聚合 用一个 DataFrame 合并聚合的输出结果 选择行与列 重塑多重索引 Series 创建透视表...用多个文件建立 DataFrame ~ 按列 上个技巧按行合并数据集,但是如果多个文件包含不同的列,该怎么办? 本例将 drinks 数据集分为了两个 CSV 文件,每个文件都包含 3 列。 ?...isna() 生成一个由 True 与 False 构成的 DataFrame,sum() 把 True 转换为 1, 把 False 转换为 0。 还可以用 mean() 函数,计算缺失值占比。...用 dropna() 删除列里的所有缺失值。 ? 只想删除列中缺失值高于 10% 的缺失值,可以设置 dropna() 里的阈值,即 threshold. ? 16....上面显示了不同性别,不同舱型的幸存率,输出结果是一个多重索引的序列(Series),这种形式与实际数据相比多了多重索引。

    7.2K20

    Pandas库

    DataFrame:二维表格数据结构,类似于电子表格或SQL数据库中的表,能够存储不同类型的列(如数值、字符串等)。...Pandas库中Series和DataFrame的性能比较是什么? 在Pandas库中,Series和DataFrame是两种主要的数据结构,它们各自适用于不同的数据操作任务。...使用str.replace ()方法替换特定位置的空格。 大小写转换: 使用str.lower ()将所有字符转换为小写。 使用str.upper ()将所有字符转换为大写。...以下是一些主要的高级技巧: 重采样(Resampling) : 重采样是时间序列数据处理中的一个核心功能,它允许你按照不同的频率对数据进行重新采样。例如,可以将日数据转换为月度或年度数据。...数据重塑(Data Reshaping) : 数据重塑是将数据从一种格式转换为另一种格式的过程,常见的方法有pivot和melt。这些方法可以用于将宽表数据转换为长表数据,或者反之。

    9710

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    3、导入表格 默认情况下,文件中的第一个工作表将按原样导入到数据框中。 使用sheet_name参数,可以明确要导入的工作表。文件中的第一个表默认值为0。...1、从“头”到“脚” 查看第一行或最后五行。默认值为5,也可以自定义参数。 ? 2、查看特定列的数据 ? 3、查看所有列的名字 ? 4、查看信息 查看DataFrame的数据属性总结: ?...Python提供了许多不同的方法来对DataFrame进行分割,我们将使用它们中的几个来了解它是如何工作的。...8、筛选不在列表或Excel中的值 ? 9、用多个条件筛选多列数据 输入应为列一个表,此方法相当于excel中的高级过滤器功能: ? 10、根据数字条件过滤 ?...以上,我们使用的方法包括: Sum_Total:计算列的总和 T_Sum:将系列输出转换为DataFrame并进行转置 Re-index:添加缺少的列 Row_Total:将T_Sum附加到现有的DataFrame

    8.4K30

    几个高效Pandas函数

    Where Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。...,为False则在原数据的copy上操作 axis:行或列 将df中列value_1里小于5的值替换为0: df['value_1'].where(df['value_1'] > 5 , 0) # 等价于...Isin Isin也是一种过滤方法,用于查看某列中是否包含某个字符串,返回值为布尔Series,来表明每一行的情况。...比如说dataframe中某一行其中一个元素包含多个同类型的数据,若想要展开成多行进行分析,这时候explode就派上用场,而且只需一行代码,非常节省时间。...Nunique 注意:nunique()与unique()方法的不同。 Nunique用于计算行或列上唯一值的数量,即去重后计数。

    1.6K60

    整理了 25 个 Pandas 实用技巧,拿走不谢!

    最后,你可以通过apply()函数一次性对整个DataFrame使用这个函数: ? 仅需一行代码就完成了我们的目标,因为现在所有的数据类型都转换成float: ? 8....如果你想要进行相反的过滤,也就是你将吧刚才的三种类型的电影排除掉,那么你可以在过滤条件前加上破浪号: ? 这种方法能够起作用是因为在Python中,波浪号表示“not”操作。 14....isna()会产生一个由True和False组成的DataFrame,sum()会将所有的True值转换为1,False转换为0并把它们加起来。...该DataFrame包含了与MultiIndexed Series一样的数据,不同的是,现在你可以用熟悉的DataFrame的函数对它进行操作。 22....我们现在隐藏了索引,将Close列中的最小值高亮成红色,将Close列中的最大值高亮成浅绿色。 这里有另一个DataFrame格式化的例子: ?

    3.2K10

    高效的10个Pandas函数,你都用过吗?

    Insert Insert用于在DataFrame的指定位置中插入新的数据列。默认情况下新列是添加到末尾的,但可以更改位置参数,将新列添加到任何位置。...Where Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。...,为False则在原数据的copy上操作 axis:行或列 将df中列value_1里小于5的值替换为0: df['value_1'].where(df['value_1'] > 5 , 0) Where...「掩码」(英语:Mask)在计算机学科及数字逻辑中指的是一串二进制数字,通过与目标数字的按位操作,达到屏蔽指定位而实现需求。 6....Isin Isin也是一种过滤方法,用于查看某列中是否包含某个字符串,返回值为布尔Series,来表明每一行的情况。

    4.2K20

    最全面的Pandas的教程!没有之一!

    获取 DataFrame 中的一行或多行数据 要获取某一行,你需要用 .loc[] 来按索引(标签名)引用这一行,或者用 .iloc[],按这行在表中的位置(行数)来引用。 ?...你可以用逻辑运算符 &(与)和 |(或)来链接多个条件语句,以便一次应用多个筛选条件到当前的 DataFrame 上。举个栗子,你可以用下面的方法筛选出同时满足 'W'>0 和'X'>1 的行: ?...最后,将这个多级索引对象转成一个 DataFrame: ? 要获取多级索引中的数据,还是用到 .loc[] 。比如,先获取 'O Level' 下的数据: ?...,index 表示按该列进行分组索引,而 columns 则表示最后结果将按该列的数据进行分列。...在上面的例子中,数据透视表的某些位置是 NaN 空值,因为在原数据里没有对应的条件下的数据。

    26K64

    整理了25个Pandas实用技巧

    从剪贴板中创建DataFrame 假设你将一些数据储存在Excel或者Google Sheet中,你又想要尽快地将他们读取至DataFrame中。 你需要选择这些数据并复制至剪贴板。...isna()会产生一个由True和False组成的DataFrame,sum()会将所有的True值转换为1,False转换为0并把它们加起来。...你可以看到,每个订单的总价格在每一行中显示出来了。...该DataFrame包含了与MultiIndexed Series一样的数据,不同的是,现在你可以用熟悉的DataFrame的函数对它进行操作。...我们可以通过链式调用函数来应用更多的格式化: ? 我们现在隐藏了索引,将Close列中的最小值高亮成红色,将Close列中的最大值高亮成浅绿色。 这里有另一个DataFrame格式化的例子: ?

    2.8K40
    领券