首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

人工智能在生物学和神经科学中的应用

人工智能(AI)一词没有严格的定义。广义上说,人工智能指的是旨在模仿人类智能的计算机系统,其目标是执行人类可以完成的任何任务(图1)。人工智能通常被认为是计算机科学的一个子领域,但它与其他几个研究领域密切相关,包括数据科学和机器学习,以及统计学。人工智能在科学领域的大部分前景来自于它在大型数据集中发现(或“学习”)结构的能力,以及使用这种结构来做出预测甚至执行任务的能力。这种人工智能系统的优势可以补充人类的优势。例如,人工智能系统能够在非常高维的数据中看到模式,因此可以作为一个强大的工具来帮助而不是取代人类研究人员。几乎所有的现代人工智能系统都依赖于人工神经网络(ANN)的变化,这是受到神经系统组织的启发。

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    无处不在的人工神经网络:机器人拥有意识的关键

    机器人、语音识别、人脸识别、自动驾驶……随着科技的发展,我们的身边正被人工智能所包围。与此同时,关于“机器人是否会有意识”的话题也渐渐受到人们的关注,一部分人认为未来的机器人将会拥有自我意识,还有一部分人则认为这是一个难以完成的任务。 说到“意识”的问题,人类之所以有意识,关键还是在于“生物大脑”存在。以此作比,机器人要想有意识,就得先有一个“大脑”,也就是所谓的“人工神经网络”。 什么是人工神经网络? 人工神经网络,常常简称为神经网络,是以计算机网络系统模拟生物神经系统的智能计算系统,是对人脑或自然神经网

    05

    自学成才的人工智能显示出与大脑工作方式的相似之处

    来源: ScienceAI本文约3800字,建议阅读5分钟本文介绍了自学成才的人工智能显示出与大脑工作的相似之处。 十年来,许多最令人印象深刻的人工智能系统都是使用大量标记数据进行教学的。例如,可以将图像标记为「虎斑猫」或「虎猫」,以「训练」人工神经网络以正确区分虎斑和虎。该战略既取得了惊人的成功,又严重不足。 这种「监督」训练需要人工费力地标记数据,而神经网络通常会走捷径,学习将标签与最少、有时甚至是肤浅的信息联系起来。例如,神经网络可能会使用草的存在来识别牛的照片,因为牛通常是在田野中拍摄的。 「我们

    01

    人工神经网络到底能干什么?到底在干什么?

    早在1943 年,神经科学家和控制论专家Warren McCulloch 与逻辑学家Walter Pitts就基于数学和阈值逻辑算法创造了一种神经网络计算模型。其中最基本的组成成分是神经元(Neuron)模型,即上述定义中的“简单单元”(Neuron 也可以被称为Unit)。在生物学所定义的神经网络中(如图1所示),每个神经元与其他神经元相连,并且当某个神经元处于兴奋状态时,它就会向其他相连的神经元传输化学物质,这些化学物质会改变与之相连的神经元的电位,当某个神经元的电位超过一个阈值后,此神经元即被激活并开始向其他神经元发送化学物质。Warren McCulloch 和Walter Pitts 将上述生物学中所描述的神经网络抽象为一个简单的线性模型(如图2所示),这就是一直沿用至今的“McCulloch-Pitts 神经元模型”,或简称为“MP 模型”。

    01

    大数据之机器学习常见算法分类汇总

    机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习

    06

    【机器学习】14种机器学习常见算法分类汇总!

    机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学

    08

    【机器学习】14种机器学习常见算法分类汇总!

    机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学

    010

    【机器学习】机器学习常见算法分类汇总

    机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。本文为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按

    010

    14种机器学习常见算法分类汇总!

    机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学

    06

    【陆勤阅读】机器学习算法汇总:人工神经网络、深度学习及其它

    摘要:机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里我们将为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 【编者按】机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。本文来自IT经理网。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机

    010

    常见机器学习算法汇总:人工神经网络、深度学习及其它

    【编者按】机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。本文来自IT经理网。 以下为原文: 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结

    07

    学习生成模型的仿生神经编码框架

    神经生成模型可用于从数据中学习复杂的概率分布,从中采样,并产生概率密度估计。我们提出了一个计算框架,用于开发受大脑中预测处理理论启发的神经生成模型。根据预测处理理论,大脑中的神经元形成一个层次,其中一个层次的神经元形成对来自另一个层次的感觉输入的期望。这些神经元基于它们的期望和观察到的信号之间的差异来更新它们的局部模型。以类似的方式,我们的生成模型中的人工神经元预测邻近神经元将会做什么,并根据预测与现实的匹配程度来调整它们的参数。在这项工作中,我们表明,在我们的框架内学习的神经生成模型在实践中跨几个基准数据集和指标表现良好,并与具有类似功能的其他生成模型(如变分自动编码器)保持竞争或明显优于它们。

    02

    【干货】机器学习常用 35 大算法盘点(附思维导图)

    【新智元导读】本文将带你遍历机器学习领域最受欢迎的算法。系统地了解这些算法有助于进一步掌握机器学习。当然,本文收录的算法并不完全,分类的方式也不唯一。不过,看完这篇文章后,下次再有算法提起,你想不起它长处和用处的可能性就很低了。本文还附有两张算法思维导图供学习使用。 在本文中,我将提供两种分类机器学习算法的方法。一是根据学习方式分类,二是根据类似的形式或功能分类。这两种方法都很有用,不过,本文将侧重后者,也就是根据类似的形式或功能分类。在阅读完本文以后,你将会对监督学习中最受欢迎的机器学习算法,以及它们彼此

    08

    【报告】邓志东:人工智能前沿技术与产业发展趋势(53PPT)

    【新智元导读】感谢清华大学计算机系教授邓志东向新智元投稿,他在《人工智能前沿技术与产业发展趋势》报告中指出,深度学习是人工智能的最新突破,一定要和大数据结合起来,做数据驱动下的感知智能产品研发,认知智能是前沿研究,支撑人工智能应用的硬件引擎也很重要。邓志东认为,弱人工智能的产业发展正处于爆发期,大家可以开始做工程化的应用产品开发了,私有大数据和深度学习芯片是制胜的关键和法宝。 【作者介绍】邓志东,清华大学计算机系教授,博士生导师。兼任中国自动化学会理事,中国自动化学会智能自动化专业委员会主任。

    07
    领券