首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

经典算法最优二叉树

前言 我想学过数据结构的小伙伴一定都认识哈夫曼,这位大神发明了大名鼎鼎的“最优二叉树”,为了纪念他呢,我们称之为“哈夫曼树”。...2、树的路径长度:从树根到每一个结点的路径长度之和,我们所说的完全二叉树就是这种路径长度最短的二叉树。...那么我们怎么判断一棵树是否为最优二叉树呢,先看看下面几棵树: ?...*3+5*3+2*1+4*2=46 WPL3:7*1+5*2+2*3+4*3=35 很明显,第三棵树的带权路径最短(不信的小伙伴可以试一试,要是能找到更短的,估计能拿图灵奖了),这就是我们所说的“最优二叉树...String str;// 最初用于压缩的字符串 private String newStr = "";// 哈夫曼编码连接成的字符串 private Node root;// 哈夫曼二叉树的根节点

1.3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    最优解-遗传算法

    前言 在很多问题上是没有标准解的,我们要找到最优解。 这就用到了遗传算法。 遗传算法是一种通过模拟自然进化过程来解决问题的优化算法。 它在许多领域和场景中都有广泛应用。...以下是一些常见的使用遗传算法的场景: 优化问题:遗传算法可以应用于各种优化问题,如工程设计、物流优化、路径规划、参数调优等。 它可以帮助找到最优或接近最优解,解决复杂的多目标优化问题。...机器学习:遗传算法可以用于机器学习的特征选择和参数调优。 例如,使用遗传算法来选择最佳特征组合,或者通过遗传算法搜索最佳参数配置以提高机器学习算法的性能。...约束满足问题:遗传算法可以用于解决约束满足问题,如布尔满足问题(SAT)、旅行商问题(TSP)等。 它可以搜索解空间,寻找满足所有约束条件的最优解或近似最优解。...从中选择最优的N个染色体继续繁殖,达到设置的繁殖代数后,获取适应度最高的个体。 需要注意的是 繁殖次数内不一定找到最优的解,繁殖的次数越多找到最优解的可能越高。

    24210

    最优子集回归算法详解

    01 模型简介 最优子集回归是多元线性回归方程的自变量选择的一类方法。从全部自变量所有可能的自变量组合的子集回归方程中挑选最优者。...04 采用regsubsets() 筛选 library(leaps) sub.fit <- regsubsets(BSAAM ~ ., data = data)# 执行最优子集回归 best.summary...,以及每个回归方程对应的评价指标,采用which函数选取最优的回归方程。...,xlab = "numbers of Features", ylab = "adjr2",main = "adjr2 by Feature Inclusion") 究竟是哪些变量是入选的最优变量呢...可做观察,横坐标为自变量,纵坐标是调整R2,且最上面的变量搭建的回归方程的调整R2是最大的,同时利用coef()可以查看最优回归方程的回归系数,结合来看变量APSLAKE、OPRC和OPSLAKE是筛选出来的变量

    4K51

    最优算法之粒子群算法(PSO)

    一、粒子群算法的概念 粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。...粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势:在于简单容易实现并且没有许多参数的调节。...每个粒子在搜索空间中单独的搜寻最优解,并将其记为当前个体极值,并将个体极值与整个粒子群里的其他粒子共享,找到最优的那个个体极值作为整个粒子群的当前全局最优解,粒子群中的所有粒子根据自己找到的当前个体极值和整个粒子群共享的当前全局最优解来调整自己的速度和位置...下面的动很形象地展示了PSO算法的过程: 2、更新规则 PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。...3、PSO算法的流程和伪代码 4、PSO算法举例 5、PSO算法的demo #include #include #include #include

    1.9K11

    局部最优算法-贪心算法详解

    贪心算法的基本思想是每一步都选择当前状态下的最优解,通过局部最优的选择,来达到全局最优。...贪心算法的应用场景贪心算法在解决一些最优化问题时可以有很好的应用,但需要注意的是,并非所有问题都适合贪心算法。。贪心算法只能得到局部最优解,而不一定是全局最优解。...最小生成树(Minimum Spanning Tree): 在图论中,通过选择边的权值最小的边来构建的最小生成树。...最终,算法选择的活动是 {A1, A2, A4, A5},它们是互相兼容的,不重叠。这就是贪心算法的基本思路:在每一步选择中,选取局部最优解以期望达到全局最优解。...然而,需要注意的是,贪心算法并不适用于所有问题,因为贪心选择可能会导致局部最优解并不一定是全局最优解。不全局最优: 在某些情况下,贪心算法可能会陷入局部最优解,而无法达到全局最优

    52311

    明月机器学习系列030:特殊二分最优匹配算法

    算法的第一个版本 ---- 把问题抽象一下,其实不管是单元格,表格,还是文本行都可以看成是一个个的元素,于是我们的问题就成了在两个有序的序列中寻找一个最优的匹配,每个元素最多能跟一个元素进行匹配(可以没有匹配...2.1 算法的目标 我们既然要找到最优的匹配,但是怎么才算是最优呢?这就是要求我们先定义一个数值指标,以此来衡量优劣。这也比较简单,对每条连线的权重求和,以此作为衡量指标。...然后在每个连通的内部删掉一些多余的边,使得每个元素最多只和一个元素联通,并且保证每个联通子删掉多余的边之后,相似度得分是最高的。...简单说就是保证每个联通子最优来保证全局最优(当然这不一定成立,但是概率很小,而且即使不是全局最优,也和全局最优相差不多了,所以可以忽略)。...后续思考 ---- 后来查资料得知,图论里专门有一种叫二分,还有相关的算法,不过我们的场景却比较特别,算是一种特殊的二分吧。研究一下现有的二分,应该还是有改进空间的。

    82120

    最优算法学习

    简要 本篇主要记录三种求最优解的算法:动态规划(dynamic programming),贪心算法和平摊分析....动态规划算法的设计可以分为以下四个步骤: 1.描述最优解的结构 2.递归定义最优解的值 3.按自底向上的方式计算最优解的值 4.由计算出的结果构造一个最优解 能否运用动态规划方法的标志之一:一个问题的最优解包含了子问题的一个最优解....这个性质为最优子结构....适合采用动态规划的最优化问题的两个要素:最优子结构和重叠子问题 贪心算法 1.贪心算法是使所做的选择看起来都是当前最佳的,期望通过所做的局部最优选择来产生出一个全局最优解. 2.贪心算法的每一次操作都对结果产生直接影响...,而动态规划不是.贪心算法对每个子问题的解决方案做出选择,不能回退;动态规划则会根据之前的选择结果对当前进行选择,有回退功能.动态规划主要运用于二维或三维问题,而贪心一般是一维问题. 3.贪心算法要经过证明才能运用到算法

    4K10

    KDD21 | 时间复杂度接近最优的通用传播算法

    这篇论文将目前绝大多数的节点邻近度指标和神经网络特征传播形式都归纳为一个概括性的传播范式,针对该传播范式,这篇论文提出了一个时间复杂度近似最优的通用算法AGP。...通过严格的理论分析,我们证明了AGP算法可以在近似最优的时间复杂度下完成所有符合该通用范式的邻近度指标的计算,例如Personalized PageRank、Heat Kernel PageRank、transition...是否可以面向这一通用传播方式,设计一种时间复杂度近似最优算法,以同时提高所有传播方式的效率? 3....针对上述传播范式,在本篇论文中,我们提出了通用传播算法AGP,首次在近似最优的时间复杂度内,得到通用传播向量 在误差要求范围内的估计结果。...AGP算法将Monte-Carlo随机游走和确定性传播两种方法的优势巧妙结合,从而在近似最优的时间复杂度下,完成了传播向量 在 相对误差下的估计,其中相对误差 为常数。

    1.1K20

    明月机器学习系列031:特殊二分最优匹配算法(二)

    开始时,并没有意识到是配对算法本身的效率问题,毕竟这个算法前不久还专门优化过,空耗了大半天的时间。后来实在没辙了,就调戏页面匹配算法,结果还真就是这个算法的问题。...即使我们在算法的第二个进行了相当部分的剪枝,但是只要匹配的元素比较多,计算量还是非常大的,看上去就像是假死了一样。 算法优化版本V3 ---- 既然知道了问题,那就想办法解决。...V3版算法步骤与实现 ---- 找到混乱区域的算法步骤: 计算左边每个元素和右边相邻元素的匹配度(在我们场景中就是字符串的相似得分,基于编辑距离); 选择匹配度最高的作为左边每个元素的临时匹配,这样就会得到一个匹配列表...梳理清楚步骤之后,实现其实就不太难了: def match(self, min_score=0.2, sort_min_score=0.01): """快速配对算法(类似贪心算法...总体上,对这整个算法的设计还是挺满意的,效果也很好,原来算法的时间复杂度应该是指数级的,现在更加接近线性级。

    51620

    哈夫曼树【最优二叉树】【Huffman】

    我们称判定过程最优二叉树为哈夫曼树,又称最优二叉树 ==========================================================================...设某二叉树有n个带权值的叶子结点,则该二叉树的带权路径长度记为: ? 公式中,Wk为第k个叶子结点的权值;Lk为该结点的路径长度。 示例: ?...,限定二叉树中除了这n个叶子外只能出现度为2的结点。...那么符合这样条件的二叉树往往可构造出许多颗, 其中带权路径长度最小的二叉树就称为哈夫曼树或最优二叉树 ==================================================...哈弗曼依据这一特点提出了一种构造最优二叉树的方法,其基本思想如下: ? 下面演示了用Huffman算法构造一棵Huffman树的过程: ?

    1.6K10

    机器学习最优算法(全面总结)

    导言 对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。...第三个问题是纯数学问题,即最优化方法,为本文所讲述的核心。 最优算法的分类 对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。...除了极少数问题可以用暴力搜索来得到最优解之外,我们将机器学习中使用的优化算法分成两种类型(本文不考虑随机优化算法如模拟退火、遗传算法等): 公式求解 数值优化 前者给出一个最优化问题精确的公式解...一个好的优化算法需要满足: 能正确的找到各种情况下的极值点 速度快 下图给出了这些算法的分类与它们之间的关系: 接下来我们将按照这张来展开进行讲解。...动态规划算法能高效的求解此类问题,其基础是贝尔曼最优化原理。一旦写成了递归形式的最优化方程,就可以构造算法进行求解。 推荐阅读 pandas进阶宝典 数据挖掘实战项目 机器学习入门

    43220

    【JavaScript 算法】贪心算法:局部最优解的构建

    贪心算法(Greedy Algorithm)是一种逐步构建解决方案的方法。在每一步选择中,贪心算法总是选择在当前看来最优的选择,希望通过这些局部最优选择最终能构建出全局最优解。...贪心算法的特点是简单高效,但它并不总能保证得到最优解。 一、贪心算法的基本概念 贪心算法的核心思想是每一步都选择当前最优的决策,不考虑未来的影响。...贪心算法的基本步骤通常包括以下几个: 选择:选择当前最优的选项。 验证:验证当前选择是否可行(通常包括是否满足约束条件)。 构建:将当前选择加入到最终的解决方案中。...贪心算法在实际开发中有广泛的应用,常见的应用场景包括: 算法:最小生成树、最短路径问题。...四、总结 贪心算法是一种通过局部最优选择构建全局最优解的方法。虽然它不总能保证得到最优解,但在许多实际问题中表现良好。通过理解和应用贪心算法,我们可以有效地解决许多复杂的优化问题。

    7810

    带权二分最优匹配(KM)

    KM算法 KM算法是在匈牙利算法的基础上衍生,在二分匹配的问题上增加权重,变成了一个带权二分匹配问题,求最优的二分匹配。 KM算法讲解,这篇博客自我感觉很好理解。...二分的带权匹配就是求出一个匹配集合,使得集合中边的权值之和最大或最小。 而二分最优匹配则一定为完备匹配,在此基础上,才要求匹配的边权值之和最大或最小。...二分的带权匹配与最优匹配不等价,也不互相包含。 我们可以使用KM算法实现求二分最优匹配。KM算法可以实现为O(N^3)。...KM的几种转化 KM算法是求最大权完备匹配,如果要求最小权完备匹配怎么办?方法很简单,只需将所有的边权值取其相反数,求最大权完备匹配,匹配的值再取相反数即可。...KM算法的运行要求是必须存在一个完备匹配,如果求一个最大权匹配(不一定完备)该如何办?依然很简单,把不存在的边权值赋为0。 KM算法求得的最大权匹配是边权值和最大,如果我想要边权之积最大,又怎样转化?

    4K31

    解读最优算法之模拟退火

    2018 06 21 模拟退火算法 模拟退火算法 ( simulated anneal , SA) 求解最优化问题常用的算法,今天应用 SA 解决一元多次函数最小值的例子解释 SA 算法。...(-ΔT/kT) 接受 S′ 作为新的当前解 如果满足终止条件则输出当前解作为最优解,结束程序,终止条件通常取为连续若干个新解都没有被接受时终止算法。...这是有意选取的一个多峰值函数,观察SA算法是否陷入局部极小;爬山算法是怎么陷入局部极小的,SA又是怎么跳出局部极小的。...T,T_max 是解空间的取值范围,i 是迭代次数,best是初始最优解,设为在 T处,break_i是控制跳出的次数,每当取到最优解则置为0. 评价函数选用min(s,s')....5 爬山算法搜索模拟 这主要得益于SA以一定概率接收不好的解,如果标注这部分,可以认为为爬山算法。再看下,爬山算法的搜索过程,陷入局部最小,搜索提前终止,所能找到的最小值为-0.5. ?

    94400

    机器学习中的最优算法总结

    导言 对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。...第三个问题是纯数学问题,即最优化方法,为本文所讲述的核心。 最优算法的分类 对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。...一个好的优化算法需要满足: 能正确的找到各种情况下的极值点 速度快 下图给出了这些算法的分类与它们之间的关系: ? 接下来我们将按照这张来展开进行讲解。...集贝叶斯分类器 5.1 本集简介 5.2 贝叶斯公式 5.3 朴素贝叶斯分类器 5.4 正态贝叶斯分类器 5.5 实验环节 5.6 实际应用 5.7 本集总结 第 6 集决策树 6.1 本集内容介绍 6.2 树与二叉树简介...切割问题 25.19 优化目标函数 25.20 算法的流程 25.21 聚类算法的评价指标 25.22 实际应用 25.23 聚类算法总结 第 26 集隐马尔可夫模型 26.1 本集内容简介 26.2

    3.1K30

    机器学习中的最优算法总结

    对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。...第三个问题是纯数学问题,即最优化方法,为本文所讲述的核心。 最优算法的分类 对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。...一个好的优化算法需要满足: 能正确的找到各种情况下的极值点 速度快 下图给出了这些算法的分类与它们之间的关系: image.png 接下来我们将按照这张来展开进行讲解。...在机器学习中用到KKT条件的地方有: 支持向量机(SVM) 具体的推导可以阅读SIGAI之前的公众号文章“用一张理解SVM的脉络”。...【获取码】SIGAI0426. [6] 用一张理解SVM的脉络【获取码】SIGAI0428. [7] 人脸检测算法综述【获取码】SIGAI0503. [8] 理解神经网络的激活函数 【获取码】SIGAI2018.5.5

    6.4K60

    算法基础之8大排序算法最优解-必读

    算法是面试考察的重点,基础算法更是基础,只有打好了基础才可能在此之上深入学习。这里总结了最常见的排序算法,每个都进行了详细分析,大家可以好好研究吸收。...但希尔排序是非稳定排序算法。...堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为Ο(nlogn)。...性能分析: 平均时间复杂度为线性的 O(n+C) 最优情形下,桶排序的时间复杂度为O(n)。桶排序的空间复杂度通常是比较高的,额外开销为O(n+m)(因为要维护 M 个数组的引用)。...关于稳定性: 稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序 不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序

    31230
    领券